Binomial Theorem

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi – 110 018, Ph. : 9312629035, 8527112111

5.00

C1 Binomial Expression :

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example :
$$\mathbf{x} + \mathbf{y}, \mathbf{x}^2 \mathbf{y} + \frac{1}{\mathbf{xy}^2}, 3 - \mathbf{x}, \sqrt{\mathbf{x}^2 + 1} + \frac{1}{(\mathbf{x}^3 + 1)^{1/3}}$$
 etc.

C2 Statement of Binomial theorem :

If $x, y \in R$ and $n \in N$, then :

$$(\mathbf{x} + \mathbf{y})^{n} = {}^{n}\mathbf{C}_{0} a^{n}b^{0} + {}^{n}\mathbf{C}_{1} a^{n-1}b^{1} + {}^{n}\mathbf{C}_{2}a^{n-2}b^{2} + \dots + {}^{n}\mathbf{C}_{r}a^{n-r}b^{r} + \dots + {}^{n}\mathbf{C}_{n} a^{0}b^{n}$$

or $(x + y)^n = \sum_{r=0}^n {}^n C_r a^{n-r} b^r$

Now, putting y = 1 in the binomial theorem

$$(1 + x)^n = {}^nC_0 + {}^nC_1 + {}^nC_2x^2 + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$$

$$(1+x)^n = \sum_{r=0}^n {}^n C_r x^r$$

Practice Problems :

or

- 1. Using binomial theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.
- 2. Find $(x + 1)^6 + (x 1)^6$. Hence or otherwise evaluate $(2 + 1)^6 + (2 1)^6$.
- 3. Show that $9^{n+1} 8n 9$ is divisible by 64, whenever n is a positive integer.
- 4. Using binomial theorem, prove that $6^n 5n$ always leaves remaining 1 when divided by 25.

C3 Properties of Binomial Theorem :

- (i) The number of terms in the expansion is n + 1.
- (ii) The sum of the indices of x and y in each term is n.
- (iii) The binomial coefficients $({}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{n})$ of the terms equidistant from the
- begining and the end are equal, i.e. ${}^{n}C_{0} = {}^{n}C_{n}$, ${}^{n}C_{1} = {}^{n}C_{n-1}$ etc.

C4 Some important terms in the expansion of $(x + y)^n$:

(i) General term :

$$(r + 1)$$
th term of $(x + y)^n$ is $T_{r+1} = {}^nC_r x^{n-r}y^r$

(ii) Middle term/(s) :

If n is even, there is only middle term, which is
$$\left(\frac{n+2}{2}\right)$$
 th term.

(b) if n is odd, there are two middle terms, which are

0

$$\left(\frac{n+1}{2}\right)$$
 th and $\left(\frac{n+1}{2}+1\right)$ th terms.

(iii)

Numerically greatest term in the expansion of $(\mathbf{x} + \mathbf{y})^n$, $\mathbf{n} \in \mathbf{N}$ Let T_r and T_{r+1} be the rth and (r + 1)th terms respectively $T = {}^{n}\mathbf{C} = \mathbf{x}^{n-(r-1)} \mathbf{v}^{r-1}$

$$\begin{array}{rcl} T_{r} & = & {}^{n}C_{r-1} x^{n-(r-1)} y^{r} \\ T_{r+1} & = & {}^{n}C_{r} x^{n-r} y^{r} \end{array}$$

Now,

Consider

$$\left| \frac{\mathbf{T}_{\mathbf{r}}}{\mathbf{T}_{\mathbf{r}}} \right| = \left| \frac{\mathbf{C}_{\mathbf{r}-1}}{\mathbf{n}} \frac{\mathbf{x}^{\mathbf{n}-\mathbf{r}+1} \mathbf{y}^{\mathbf{r}-1}}{\mathbf{x}^{\mathbf{n}-\mathbf{r}+1} \mathbf{y}^{\mathbf{r}-1}} \right| = \frac{\mathbf{r}}{\mathbf{r}} \cdot \left| \mathbf{x} \right|$$
$$\left| \frac{\mathbf{T}_{\mathbf{r}+1}}{\mathbf{T}_{\mathbf{r}}} \right| \ge 1, \left(\frac{\mathbf{n}-\mathbf{r}+1}{\mathbf{r}} \right) \left| \frac{\mathbf{y}}{\mathbf{x}} \right| \ge 1, \frac{\mathbf{n}+1}{\mathbf{r}} - 1 \ge \left| \frac{\mathbf{x}}{\mathbf{y}} \right|, \mathbf{r} \le \frac{\mathbf{n}+1}{1+\left| \frac{\mathbf{x}}{\mathbf{r}} \right|}$$

 $\left| \mathbf{T}_{\mathbf{r}+1} \right|$ $\left| \mathbf{C}_{\mathbf{r}} \mathbf{x}^{\mathbf{n}-\mathbf{r}} \mathbf{y}^{\mathbf{r}} \right| \mathbf{n}-\mathbf{r}+1 \left| \mathbf{y} \right|$

Practice Problems :

- 1. Show that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1\cdot 3\cdot 5\dots(2n-1)}{n!}\cdot 2^n\cdot x^n$, where $n \in N$.
- 2. Show that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$.
- 3. Find the value of r, if the coefficients of (2r + 4)th and (r 2)th terms in the expansion of $(1 + x)^{18}$ are equal.
- 4. If the coefficient of (r 1)th, rth and (r + 1)th terms in the expansion of $(x + 1)^n$ are in the ratio 1:3:5, find n and r
- 5. The 2nd, 3rd and 4th terms in the expansion of $(x + y)^n$ are 240, 720 and 1080 respectively. Find the values of x, y and n.
- 6. Find the coefficient of x^5 in the product $(1 + 2x)^6 (1 x)^7$ using binomial theorem.
- 7. Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 \frac{1}{3x}\right)^6$.
- 8. Find the coefficient of a^4 in the product $(1 + 2a)^4 (2 a)^5$ using binomial theorem.
- 9. The sum of the coefficients of the first three terms in the expansion of $\left(x \frac{3}{x^2}\right)^m$, $x \neq 0$, m being a natural number, is 559. Find the term of the expansion containing x^3 .

10. Show that the greatest coefficients in the expansion of
$$\left(x+\frac{1}{x}\right)^{2n}$$
 is $\frac{1\cdot3\cdot5\cdot\ldots(2n-1)\cdot2^n}{n!}$

- 11. Express $(x + \sqrt{x^2 + 1})^6 + (x \sqrt{x^2 + 1})^6$ as a polynomial in x.
- 12. If a_1, a_2, a_3 and a_4 be any four consecutive coefficients in the expansion of $(1 + x)^n$, prove that

$$\frac{a_1}{a_1+a_2} + \frac{a_3}{a_3+a_4} = \frac{2a_2}{a_2+a_3}$$

[Answers : (3) 6 (4) n = 7, r = 3 (5) x = 2, y = 3 and n = 5 (6) 171 (7) 5/12 (8) -438 (9) -5940 x^3]

C5 Multinominal Theorem

As we know the Binomial Theorem $(\mathbf{x} + \mathbf{y})^n = \sum_{r=0}^n {}^n \mathbf{C}_r \mathbf{x}^{n-r} \mathbf{y}^r = \sum_{r=0}^n \frac{n!}{(n-r)!r!} \mathbf{x}^{n-r} \mathbf{y}^r$

putting $n - r = r_1$, $r = r_2$

therefore, $(\mathbf{x} + \mathbf{y})^n = \sum_{\mathbf{r}_1 + \mathbf{r}_2 = n} \frac{n!}{\mathbf{r}_1!\mathbf{r}_2!} \mathbf{x}^{\mathbf{r}_1} \cdot \mathbf{y}^{\mathbf{r}_2}$

Total number of terms in the expansion of $(x + y)^n$ is equal to number of non-negative integral solution of $r_1 + r_2 = n$ i.e. ${}^{n+2-1}C_{2-1} = {}^{n+1}C_1 = n+1$

In the same fashion we can write the multinominal theorem

$$(\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_k)^n = \sum_{\mathbf{r}_1 + \mathbf{r}_2 + \dots + \mathbf{r}_k = n} \frac{n!}{\mathbf{r}_1! \mathbf{r}_2! \dots \mathbf{r}_k!} \mathbf{x}_1^{\mathbf{r}_1} \cdot \mathbf{x}_2^{\mathbf{r}_2} \dots \mathbf{x}_k^{\mathbf{r}_k}$$

Here total number of terms in the expansion of $(x_1 + x_2 + ... + x_k)^n$ is equal to number of non-negative integral solution of $r_1 + r_2 + ... + r_k = n$ i.e. ${}^{n+k-1}C_{k-1}$

Practice Problems :

1. (i) the middle term in the expansion of $\left(x - \frac{1}{2y}\right)^{10}$ (ii) the coefficient of x^{32} and x^{-17} in the expansion

of
$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$

2. Find the coefficient of x^5 in the expansion of the product $(1 + 2x)^5 (1 - x)^7$.

[Answers: (1) (i)
$$-\frac{63x^5}{8y^5}$$
 (ii) 1365, -1365 (2) 171]

C6 Properties of Binomial Coefficients :

 $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_r x^r + \dots + C_n x^n$(1) The sum of the binomial coefficients in the expansion of $(1 + x)^n$ is 2^n (1) Putting x = 1 in (1) ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$ $\sum_{n=1}^{n} {}^{n}C_{r} = 2^{n}$ or Again putting x = -1 in (1), we get (2) ${}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n} {}^{n}C_{n} = 0$(3) $\sum_{n=0}^{n} (-1)^{r} {}^{n}C_{r} = 0$ or The sum of the binomial coefficients at odd position is equal to the sum of the binomial (3)coefficients at even position and each is equal to 2^{n-1} i.e., ${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = 2^{n-1}$ ${}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$ Sum of two consecutive binomial coefficients ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

Ratio of two consecutive binomial coefficients $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$

(6)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} {}^{n-2}C_{r-2}$$

Practice Problems :

1. Prove the following identities :

- ${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = 2^{n-1}$ (a)
- ${}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$ **(b)**
- ${}^{n}C_{0} + 3 {}^{n}C_{1} + 5 {}^{n}C_{2} + \dots + (2n+1){}^{n}C_{n} = (n+1)2^{n}$ (c)
- ${}^{n}C_{1} 2 {}^{n}C_{2} + 3 {}^{n}C_{3} \dots + (-1)^{n-1} n^{n}C_{n} = 0$ (**d**)
- $C_1 + 2 C_2 + 3 C_3 + \dots + n C_n = n 2^{n-1}$ **(e)**
- $C_0 + 2 C_1 + 3 C_2 + ... + (n+1) C_n = 2^n + n 2^{n-1}$ **(f)**
- $C_0 \frac{C_1}{2} + \frac{C_2}{3} \dots = \frac{1}{n+1}$ (g)

(h)
$$2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$$

(i)
$$C_0 + \frac{C_2}{3} + \frac{C_4}{5} + \dots = \frac{2^n}{n+1}$$

(j)
$$2C_0 + 5C_1 + 8C_2 + \dots + (3n+2)C_n = (3n+4)2^{n-1}$$

Binomial Theorem For Negative Integer or Fractional Indices C7 If $n \in R$ then,

If n ∈ R then,

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots$$

$$+ \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{f} + \dots \infty$$

+
$$\frac{n(n-1)(n-2)...(n-r+1)}{r!}x^{f}$$
+......∞

Remarks

- (i) The above expansion is valid for any rational number other then a whole number if |x| < 1.
- When the index is a negative integer or a fraction then number of terms in the expansion of $(1 + x)^n$ is (ii) infinite. and the symbol "C_r cannot be used to denote the coefficient of the general term.
- The first terms must be unity in the expansion, when index 'n' is a negative integer or fraction. (iii)

(iv) The general term in the expansion of
$$(1 + x)^n$$
 is $T_{r+1} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^n$

When 'n' is any rational number other than whole number then approximate value of (v) $(1 + x)^n$ is 1 + nx (x² and higher powers of x can be neglected)

(vi) Expansion to be remembered $(|\mathbf{x}| < 1)$

- $(1 + x)^{-1} = 1 x + x^2 x^3 + \dots + (-1)^r x^r + \dots \infty$ (a)
- $(1 x)^{-1} = 1 + x + x^2 + x^5 + \dots + x^r + \dots \infty$ (b)
- $(1 + x)^{-2} = 1 2x + 3x^2 4x^3 + \dots + (-1)^r (r + 1) x^r + \dots \infty$ (c)
- $(1 x)^{-2} = 1 + 2x + 3x^{2} + 4x^{3} + \dots + (r + 1)x^{r} + \dots \infty$ (d)

Practice Problems :

- Find the coefficient of x^6 in the expansion of $(1 2x)^{-5/2}$. 1.
- Find the coefficient of x^{10} in the expansion of $\frac{(1+3x^2)}{(1-x^2)^3}$, mentioning the condition under which the 2.

result holds.

$$[\text{Answers}:(1)\left[\frac{15015}{16}\right]]$$