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COMPLEX NUMBER
Cl1  Thecomplex number
Complex number is denoted by z i.e. z=a + ib, where *a’ is called as real part of z (denoted by Re z) and ‘b’ is
called as imaginary part of z (denoted by Im z). Here i = V-1, also i?=-1, i* =—i; i* = 1 etc.
The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number systemis
NcWclcQcRcC.
Practice Problems :
1 If nis natural number then the value of i+ i"*1 +"*2 +jn*3js
@ 1 ®) 0 © i @ —i
2. The value of (i*® + 1) (i®® + 1)....(i + 1) will be
@ 0 ®) 1 © i @ —i
[Answers: (1) b (2) a]
C2  Algebraic Operations on Complex Number :
1 Addition (@+bi)+(c+di)=a+bi+tc+di=(a+c)+(b+d)i
2 Subtraction (@+bi)—(c+di)=a+bi-c—-di=(a-c) +(b-d)i
3 Multiplication ~ (a+ ib) (c + id) =ac + adi + bci + bdi? = (ac— bd) + (ad+ bc)i
4 Division a+b.i=a+b?_c—d? =ac+bd+bc—ad.
c+di c+di c—-di 24d? c%2+d?
Inequalities in complex numbers are not defined.
In real numbers if a* + b?>= 0 then a = 0 = b however in complex numbers, z,* +z,> = 0 does not
implyz =2z,=0.
7. Equality In Complex Number : If z =z, = Re(z,) =Re(z,) and | _(z,))=1_(z,)
Practice Problems :
1 3 3+4i
1. The value of i |
e value o [1—2i + m i)[2—4i) is equal to
1 9. 1 9 1 9. 1 9.
=+—i ——=i ———i d —+—i
@) 272 by 577 © 773 @ 3
1+i\" . .
2. If -l = 1 then the least integral value of m is
(@) 2 (b) 4 (c) 8 (d) 10
1+)x=2i (2+3i))y+i . .
3. If ( ) - + ( )_y =1, then the real value of x and y are given by
3+i 3—i
(@) x=-3,y=-1 (b) x=3,y=-1 (©) x=3,y=1 (d) x=1y=-3
[Answers : (1) d (2) b (3) b]
C3  Modulus of a Complex Number :

If z=a + ib, then it’s modulus is denoted and defined by | Z |= vVa® +b? . Infact |z| is the distance of z from
origin.
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Properties of modulus

i = i i —ﬂ id 0

@) z,z)|=1z) 2, (ii) 2" 12,1 (provide z, #0)
2 2

(iii) 2, +z,|<[z,|+]z)| (iv) z,—z|2lz,|- |z,

(E_qL_JaIity in (iii) and (iv) holds ifand only if origin, z, and z, are collinear with z, and z, on the same side of
origin).

Representation of a Complex Number :

Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point on the Cartesian plane known as complex
plane (Argand diagram) by the ordered pair (X, )

imaginary
axis  P(x,y)
1y
r Length OP = |z| = /x? +y? and 6 = tan 1;
0 »real axis
0

0 is called the argument or amplitude. If 6 is the argument of a complex humber then 2 n + 0; n < 1 will
also be the argument of that complex number. The unique value of 6 such that — & < 6 < rt is called the
principal value of the argument. Unless otherwise stated, amp z implies principal value of the argument.

y S
The argumentofz=6, -6, -n+6,-0, 6 = tan™? ME according as.z=x + iy liesin I, I, 1l or I\Vth
quadrant.
Properties of Argument of a Complex Number :
0] arg (z,z,) = arg (z,) + arg (z,) + 2mn for some integer m.
(i) arg (z,/z,) = arg (z,) —arg (z,)+ 2mn for some integer m.
(iii) arg (z?) = 2arg (z) +2mx for some integer m.
(iv) arg (z) =0 P z is real, for any complex number z = 0
(V) arg (2) =72 <& z is purely imaginary, for any complex number z = 0
(vi) arg (z,~z,) = angle of the line segment joining the point (z,) and point (z,)

Trignometric/Polar Representation :
z=r(cos @+.isin0)where|z|=r;argz=0; Z =r(cos O —isin 0)
cos 0 +i'sin 0 is also written as CiS 0 or €®.
Euler’s Representation :
z2=re®;|z|=r;argz=0;z =re ™"
iX e—ix iX e—ix
Also COSX = — and sinx = — are known as Euler’s identities.
Vectorial Representation :
Every complex number can be considered as if it is the position vector of a point. If the point P represents

the complex number z then, OP =z &| oP =l z].
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Practice Problems :

5
If|zl=4andargz = > then z equalsto

1 5
@ 23 -2i ®) 23 +2i © —2y3+2i @ ~J3+i
2. Ifx = cos[lj +isin [Lr) then
r 2r 2
X, X, * X0 0018
@ -3 ®) -2 © -1 @ 0
3. The amplitude or argument of % will be
0 L L n
@ ® © 3 @ g
[Answers: (1) c (2) c (3)c]
C5  Conjugate of a complex Number
Conjugate of a complex number z = a + ib is denoted and defined by z=a-ib
Properties of conjugate
) iz=1z| (i) 22z (i) (zg+2,)=(21)+(22)
_ _ - - . _ 7, _(21)
(iv) (21-2,)=(21)-(22) ) (2125) = (Zy) (Z,) (vi) (22]— 22) (z, #0)
(vii) |2, +2, = (2, +2,) (2, +25) =12, P+ 2, [? +2¢22 + 712, wiiy  (z2)=z
) arg(z)+arg(z) =0
C6  Demoivere’s Theorem:
If nis any integer then
0] (cos 6 +isin6)"=cosnO +isinnd
(i) (cos 0, +1isin 0,) (cos 6, +isin 0,) (cosO, +isin 0,) (cos O, +isin 0,)....
(cos@,+isin0 )=cos(0,+0,+...+0)+isin(0,+0,+....+0)
Practice Problems :
1 Simplify the following :
_ (cos20—isin20)’ (cos 30+ isin 30)° - i®(sin 20+ i cos 20)
® (cos50+isin50)3(cos 76— isin 76)? (i) (cosO—isin®)?
2.

Ifx=cos@+isin®and /1 —¢c2 = nc—1,Showthat 1+ ccosezzi(h. nx)[1+ﬂ).
n X
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3. Ifx+(1/xX)=2cos0 andy + (1/y) = 2 cos $ etc, then prove that
1 Xy
(i) XyZ....+—....=2COS@+¢+...) (ii) —+—:2COS(9—¢)
Xyz y X
1 X" y"
Giiy x"y" + = 2cos(mO +n) )  —5t-m=2c0s(mb-n¢)
xMy" Yy X
[Answers: 1 (i) 1 (ii) -1]
C7  Cube Root of Unity :

. . —-1+iy3 —1-iy3
(0] The cube root of unity are 1, +2|\/_ , 2I\/_

(i) If  is one of the imaginary cube roots of unity then 1 + ® + ®*=0. In general 1 + o'+ ©* = 0;
where r e | but is not the multiple of 3.

. .. 2t . . 2%; dn . . 4xm
(iii) In polar form the cube roots of unity are : cos0+isin 0;cos?+ i sm?,cos?+ i sm?
(iv) The three cube roots of unity when plotted on the argand plane constitute the varties of an

equilateral triangle.
(V) The following factorisation should be remembered :
(a, b, c e Rand w is the cube root of unity)
ad-b*=(a-bh) (a-owh) (a-wbh) ; a?+a+l=(a-o) (@a-w?)
ad+bh*=(a+h)(a+ wb)(a+wb) ; a>+ab + b?2=(a- bo) (a-bw?

a®+b®+ct-3abc=(a+b+c)(a+ wb+ wk) (a+ w?b+ wc)
Practice Problems :

1 If 1, o, ®? are the cube roots of unity, prove that
@) l-o0+e®)(l+o-0?)=4 (i) l+o)(l+e?)(l+o)(l+e®) =1
(iii) (2 + 50+ 20%)° = (2 +2m + 50?)° = 729
(iv) (l-0+ e (1-*+0f) (1-*+0f)......... to 2n factors = 22",
. *aan 3, when nisamultiple of 3
(V) 1+ +0° = B B
0,when nis nota multiple of 3

(vi) @+ o+o?) (@a+ o+ o) (a+o+ed)..to2nfactors. = (a— 1)

i a+bco+Cc02+a+bco+Cco2 .
VIl = -
C+amn+bw® b+co+an’

2. If ® and »? are complex cube roots of unity, prove that
U] X +y* = (X +Y) (ox + @) (0°X + wy) (if) X =y = (X -Y) (oX - 0%) (@’ - oy)
3 If ® is an imaginary cube root of unity, prove that 1 + 1 1.
' ginary ¥, P 1420 2+0 l+o
4. Givenz +z,+z,=A,2, + 2,0+ 2,0’ = B, 2, + &’ + Z,® = C where w is cube root of unity
0] express z,,z,, z, interms of A, B, C
(if) prove that |A* + [B|* + |C]? = 3(]z,|* + [z, + z,[)
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A+B+C | _A+B0o’+Co  A+Bo+Ca?

[Answers: (4) 2, = 3 , L2 3 v 23 = 3

C8  nthRoots of Unity :
If1, 0,0 O a, _, arethe n, nth root of unity then :
@ Theyare in G.P. with common ratio '@+
(i) PP+af+ar+...+of =0, ifpisnotanintegral multiple of n
=nifpisanintegral multiple of n
(iii) (l-a)(l-o)...1-0a _)=n
(1+a)(l+a,)...(1+a _)=0ifnisevenand 1ifnisodd.
(iv) 1oy 0. Oy, a,_,=1or-1accordingasnisodd or even.
Practice Problems :
1 Ifl,a,a,,.., a _ arethenthroots of unity and nisan odd natural number then find the value of (1 +a.)
(1+a)(l+a)...(1+a, )
C9  Rotationtheorem
0] If P(z,) and Q(z,) are two complex numbers such that |z,| = |z |, then z, = z ” where 8 = ZPOQ
Q(z,)
G
(0] / P(z,)
(i) IfP(z,), Q(z,) and R(z,) are three complex numbers and ZPQR =0, then
[Zs —22]=|23 —Zz|eie
Z,—1, | Z,—1, |
R(z)
Qz) /X P(z)
Practice Problems :
1 Ifz,,z,, z are vertices of an equilateral A having its circumcentre at origin such that z, = 1 + i thenfind z,
andz,.
2. Show that the triangle whose vertices are the points represented by the complex numbersz, z,, z, onthe
1 N 1 N 1 0
1 1 1 1 = Ic1 1 2 2
Argand plane isequilateral if and only if 2,-7, 2,2, z,-1, ,thatisifandonlyifz’+z,
+22=227,+22,+27,.
3. Ifz,, z, z, be the affixes of the vertices A, B and C respectively of a triangle ABC having centroid at G. such
that z =0 is the mid-point of AG, then prove that 4z, +z,+z,=0.
4, @ Complexnumbers z,, z,, z, are the vertices A,B,C respectively of an isosceles right angled

triangle with right angle at C. Show that (z, -z,)* =2 (z, - z,) (z,~- 2,)

(b) Ifz?+2z72-2z2z, cos 0 =0 then the origin z,, z, form vertices of an isosceles triangle with
vertical angle 6.
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Show that the triangle whaose verticesare z,, z., z. and Zi,Z;,Zg are directly similar if

172173
z, z; 1
z, z, 1=0.
Z3 2'3 1
C10 Logarithm of a Complex Quantity :
. oy 1 2 2y i B
0] Loge(a+|B)—ELoge(a +B°)+il 2nt+tan™ = |wherene
o
—[2nn+§]
(i) i' represents a set of positive real numbers given by e ,nel
C11 Geometrical Properties :
0] Distance Formula : Ifz and z, are affixies of the two points P and Q respectively then distance
between P and Q is given by |z, - Z,|
(i) Section Formula : If z, and z, are affixes of the two points P and Q respectively and point C

divides the line joining P and Q internally in the ratio m : n then affix z to C is given by
mz, +nz
;= Mz +NZy
m+n

o . . mz, —nz,
If C divides PQ in the ratio m : n externally then z = PTe)
(iii) Condition of collinearty :

Ifa, b, c are three real numbers such thataz, + bz, + cz,=0; wherea+b+c=0anda, b, care
not all simultaneoulsy zero, then the complex numbers z,, z, and z, are collinear.

Important Results :

1) If the vertices A, B, C of a triangle represents the complex numbers z,, z,, z, respectively and
a, b, c are the length of sides then,

. . Z1+2Zy+24

0] Centroid of the AABC = E

(i) Orthocenter of the AABC =

(asecA)z, +(bsecB)z, +(csecC)z, or z;tanA+z,tanB+z5tanC

asecA+bsecB+csecC tanA+tanB +tanC
(iii) Incentre of the AABC = (az, + bz, + cz,) / (sin 2A + sin 2B + sin 2C)
(2 amp (z) = 0 is a ray emanating from the origin inclined at an angle 0 to the x-axis.
3) |z—-z,| =z -z,] is the perpendicular bisector of the line joining z, to z,.
(4) The equation of a line joining z, and z, is given by, z =z, + t(z, — z,) where t is a real
parameter.
(5) z=z (1 +it) wheretis a real parameter is a line through the point z, & perpendicular to the
line joining z, to the origin.
(6) The equation of a line passing through z, and z, can be expressed in the determinant form as
z z 1
z, z, 1=0.Thisisalso the condition for three complex numbers to be collinear. The
z, z, 1
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above equation on manipulating, takes the form oz + az+r =0 wherer isreal and a.is a non
zero complex constant.

The equation of circle having centre z and radius ris : [z—z,| = r
General equation of the circle zzZ + az + az + b = 0 where a is a complex number and b is real

number. Centre of the circle is —a and radius is y/|a|? —b .

The equation of the circle described on the line segment joining z, & z, as diameter is
z-12,
z-24

arg- 2 =k0r (2-2,)(2~22)+ (2-2;)(2-21) = 0.

iy _ _ . Z3-2, 7,-1
Condition for four given points z,, z,, z, & z, to be concyclic is the number zs—zﬁ
3742 441

should be real. Hence the equation of a circle through 3 non collinear points z,, z, &z, can be

(z2-25)(z5—24)

is real
(z2-21)(25-2,)

taken as

(2-2,)(25-2)) _ (2-2,)(2, -2,
(z-2)(25-25) (z-2,)(z,-2,

)
)

Arg[ ! ] =0 represent
z-7,

0] alinesegmentif6=n
(D) Pair of ray if6 =0
(iii) apart of circle, if0<8<mn

. \ 11 -
Area of triangle formed by the points z,, z, & z_ is m z, 22 1
| —

z3 z3 1

: ; : L= - . lazg+azo+r
Perpendicular distance of a point z, from the line az+az+r=0s lazo+azotr]

2|a
0] Complex slope of a line 0z+0z+r=0 js o= —%
£ S . 417
(i) Complex slope of a line joining by the points z, & z, is ® = -2,

(iii) Complex slope of a line makine 6 angle with real axis = e

o, & o, are the complex slopes of two lines.

0] I lines are parallel then o, = o,

(i) If lines are perpendicular then @, + w, =0

Iflz-z|+]z-2|=K>|z —z]then locus of z is an ellipse whose focii are z, & z,

oZ+ozZ+r

then locus of z is parabola whose focus is z; and directrix is the line

azp+0zy+r=0
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17) If i_il =k where k=0 or 1 then locus of z is circle.

—£2
(18) Iflz-z|-|z-z)|= K<|z,-z)] then locus of z is a hyperbola, whose focii are 2,&z,
@ Reflection points for a straight line :

Two given points P & Q are the reflection points for a given straight line if the given line is the
right bisector of the segment PQ. Note that the two points denoted by the complex numbers

z, & z, will be the reflection points for the straight line az+az+r=0ifand only if;

az,+azz2+r =0, whererisreal and o is non zero complex constant.

(b) Inverse points w.r.t. a circle :
Two points P & Q are said to be inverse w.r.t. a circle with centre ‘O’ and radius p, if :
0] the point O, P, Q are collinear and P, Q are on the same side of O.

(i) OP.0Q=p
The two points z, & z, will be the inverse points w.r.t. the circle zz+az+az+r=0 if and only if
2122 +&zl+a22 +r=0.

Practice Problems :

Find the radius and centre of the circle zz+(1-i)z+(1+i)z-7=0.

Determine the value of k for which equation zz+ (-3+4i)z—(3+4i)z+k =0 represent a circle.

Show that the points representing the complex numbers (3 + 2i), (2— i) and —7i are collinear.

Find the perpendicular bisector of 3 + 4i and -5 + 6i.

Ifz,, z,, z, are the affixes of the vertices of a triangle having its circumeentres at the origin. If z is the
affix of its orthocentre then prove thatz, +z, + z, -z =10

Find the locus of a complex number z in the Argand plane, satisfying |z — (1 + i)| = 5.

z-1
z

Show that the locus of a complex number z satisfying arg[—l) =g is a circle. Find the equation of
+

the circle in cartesian coordinates.

Locate the points in the Argand plane representing the complex numbers z = x + iy for which
0] z+1]+]|z-1]<3

(ii) arg(z—4—i)= %
(iii) z-1] +|z+1]=4
(iv) arg(z+i)—arg(z-i)=m/2

1-iz

Find the locus of the complex number z in the Argand plane if ‘ ‘ =1,

1-zi
Ifz=x+iyand ® =S |o] = 1, then find the locus of z.

[Answers : (1) (-1, -1), 3 (2) k < 25 (4)(8+2i)z+(8—2i)z+36=0(6) Circle (7) xX* + y? =1
(8) (i) Interior of the ellipse having foci at (1, 0) and (-1, 0) and major axis of length 3 units (ii) A
straight line passing through (4, 1) and making an angle of ©/6 with x-axis (iii) Ellipse with foci at
1+ 0.iand -1 + 0.i and centre at origin (iv) Locus of point z is a circle with diameter AB and centre
at origin with radius 1 (10) z lies on the real axis]

Ptolemy’s Theorem :

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is
equal to the sum of the products of lengths of the two pairs of its opposite sides.

ie. lz,-2z|lz,~-2|=1z,~-Z[|lz,-Z,| + 1z, - Z,| |z, - ZJ|.
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