Complex Number Complex Number Complex Number Complex Number Complex Number Complex Number

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi – 110 018, Ph. : 9312629035, 8527112111

C1	The complex number								
	Complex number is denoted by z i.e. $z = a + ib$, where 'a' is called as real part of z (denoted by Re z) and 'b' is called as imaginary part of z (denoted by Im z). Here $i = \sqrt{-1}$, also $i^2 = -1$, $i^3 = -i$; $i^4 = 1$ etc.								
	The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number system is $N \subset W \subset I \subset Q \subset R \subset C$.								
	Practice Problems :								
1.	If n is natural number then the value of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is								
	(a)	1	(b)	0	(c)	i	(d)	— i	
2.	The value	The value of $(i^{100} + 1) (i^{99} + 1)(i + 1)$ will be							
	(a)	0	(b)	1	(c)	i	(d)	-i	
	[Answers	s:(1) b(2) a]							
C2	Algebraic Operations on Complex Number :								
	1.	Addition $(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d) i$							
	2.	Subtraction $(a + bi) - (c + di) = a + bi - c - di = (a - c) + (b - d)i$							
	3.	Multiplication $(a + ib) (c + id) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i$							
	4.	Division $\frac{\mathbf{a} + \mathbf{b}\mathbf{i}}{\mathbf{c} + \mathbf{d}\mathbf{i}} = \frac{\mathbf{a} + \mathbf{b}\mathbf{i}}{\mathbf{c} + \mathbf{d}\mathbf{i}} \cdot \frac{\mathbf{c} - \mathbf{d}\mathbf{i}}{\mathbf{c} - \mathbf{d}\mathbf{i}} = \frac{\mathbf{a}\mathbf{c} + \mathbf{b}\mathbf{d}}{\mathbf{c}^2 + \mathbf{d}^2} + \frac{\mathbf{b}\mathbf{c} - \mathbf{a}\mathbf{d}}{\mathbf{c}^2 + \mathbf{d}^2}\mathbf{i}$							
	5.	Inequalities in complex numbers are not defined.							
	6.	In real numbers if $a^2 + b^2 = 0$ then $a = 0 = b$ however in complex numbers, $z_1^2 + z_2^2 = 0$ does not imply $z_1 = z_2 = 0$.							
	7.	Equality In Complex Number : If $z_1 = z_2 \Rightarrow \text{Re}(z_1) = \text{Re}(z_2)$ and $I_m(z_1) = I_m(z_2)$							
	Practice Problems :								
1.	The value of $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right)$ is equal to								
	(a)	$\frac{1}{2} + \frac{9}{2}i$	(b)	$\frac{1}{2}-\frac{9}{2}i$	(c)	$\frac{1}{4} - \frac{9}{4}i$	(d)	$\frac{1}{4} + \frac{9}{4}i$	
2.	If $\left(\frac{1+i}{1-i}\right)$	If $\left(\frac{1+i}{1-i}\right)^m = 1$ then the least integral value of m is							
	(a)	2	(b)	4	(c)	8	(d)	10	
3.	If $\frac{(1+i)x-2i}{3+i} + \frac{(2+3i)y+i}{3-i} = i$, then the real value of x and y are given by								
	(a) [Answer	x = -3, y = -1 s : (1) d (2) b (3)	(b) b]	x = 3, y = -1	(c)	x = 3, y = 1	(d)	x = 1, y = -3	

C3 Modulus of a Complex Number :

If z = a + ib, then it's modulus is denoted and defined by $|z| = \sqrt{a^2 + b^2}$. Infact |z| is the distance of z from origin.

Properties of modulus

(i)
$$|z_1 z_2| = |z_1| |z_2|$$
 (ii) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ (provide $z_2 \neq 0$)

(iii) $|z_1 + z_2| \le |z_1| + |z_2|$ (iv) $|z_1 - z_2| \ge ||z_1| - |z_2||$

(Equality in (iii) and (iv) holds if and only if origin, z_1 and z_2 are collinear with z_1 and z_2 on the same side of origin).

C4 Representation of a Complex Number :

(a) Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point on the Cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y)

 θ is called the argument or amplitude. If θ is the argument of a complex number then $2 n\pi + \theta$; $n \in I$ will also be the argument of that complex number. The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument. Unless otherwise stated, amp z implies principal value of the argument.

The argument of $z = \theta$, $\pi - \theta$, $-\pi + \theta$, $-\theta$, $\theta = \tan^{-1} \left| \frac{\mathbf{y}}{\mathbf{x}} \right|$, according as z = x + iy lies in I, II, III or IVth quadrant.

Properties of Argument of a Complex Number :

- (i) $\arg(z_1z_2) = \arg(z_1) + \arg(z_2) + 2m\pi$ for some integer m.
- (ii) $\arg(z_1/z_2) = \arg(z_1) \arg(z_2) + 2m\pi$ for some integer m.
- (iii) $\arg(z^2) = 2\arg(z) + 2m\pi$ for some integer m.

(iv) $\arg(z) = 0$ \Leftrightarrow z is real, for any complex number $z \neq 0$

(v) $\arg(z) = \pm \pi/2 \iff z$ is purely imaginary, for any complex number $z \neq 0$

(vi) $\arg(z_2 - z_1) = \text{angle of the line segment joining the point } (z_1) \text{ and point } (z_2)$

(b) Trignometric/Polar Representation :

 $z = r (\cos \theta + i \sin \theta)$ where |z| = r; arg $z = \theta$; $\overline{z} = r(\cos \theta - i \sin \theta)$

 $\cos \theta + i \sin \theta$ is also written as CiS θ or $e^{i\theta}$.

(c) Euler's Representation :

$$z = re^{i\theta}; |z| = r; arg z = \theta; \overline{z} = re^{-i\theta}$$

Also $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and $\sin x = \frac{e^{ix} - e^{-ix}}{2}$ are known as Euler's identities.

(d) Vectorial Representation :

Every complex number can be considered as if it is the position vector of a point. If the point P represents the complex number z then, $\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|$.

Practice Problems :

1. If
$$|z| = 4$$
 and $\arg z = \frac{5\pi}{6}$ then z equals to
(a) $2\sqrt{3} - 2i$ (b) $2\sqrt{3} + 2i$ (c) $-2\sqrt{3} + 2i$ (d) $-\sqrt{3} + i$
2. If $\mathbf{x}_{i} = \cos\left(\frac{\pi}{2^{i}}\right) + i \sin\left(\frac{\pi}{2^{i}}\right)$ then
 $\mathbf{x}_{i} \cdot \mathbf{x}_{i} \cdot \mathbf{x}_{j} \dots \infty$ is
(a) -3 (b) -2 (c) -1 (d) 0
3. The amplitude or argument of $\frac{(1+i)(2+i)}{(3-i)}$ will be
(a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{6}$
[Answers : (1) c (2) c (3) c]
C5 Conjugate of a complex Number
Conjugate of a complex Number
Conjugate of a complex number $z = a + ib$ is denoted and defined by $\overline{\mathbf{z}} = \mathbf{a} - ib$.
Properties of conjugate
(i) $|z| = |\overline{z}|$ (ii) $z\overline{z} = |z|^{2}$ (iii) $(\overline{z_{1} + z_{2}}) = (\overline{z_{1}}) + (\overline{z_{2}})$
(iv) $(\overline{z_{1} - z_{2}}) = (\overline{z_{1}}) - (\overline{z_{2}})$ (v) $(\overline{z_{1} z_{2}}) = (\overline{z_{1}}) (\overline{z_{3}})$ (vi) $(\overline{\frac{z_{1}}{z_{2}}}) = (\overline{z_{1}})(\overline{z_{2}} \neq \mathbf{0})$
(vii) $|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})(\overline{z_{1} + z_{2}}) = |z_{1}|^{2} + |z_{2}|^{2} + z_{1}z_{2} + \overline{z_{1}}z_{2}$ (viii) $(\overline{z}) = z$
(ix) $\arg(z) + \arg(\overline{z}) = 0$
C6 Demoiver's Theorem:
If n is any integer then
(i) $(\cos \theta + i \sin \theta) = \cos \theta + i \sin \theta$, $(\cos \theta + i \sin \theta)$, $(\cos \theta + i \sin \theta)$, $(\cos \theta + i \sin \theta)$, \dots
 $(\cos \theta + i \sin \theta) = \cos \theta + i \sin \theta$, $(\cos \theta + i \sin \theta)$, $(\cos \theta + i \sin \theta)$, $(\cos \theta + i \sin \theta)$, $(\cos \theta - i \sin \theta)^{2}$
1. Simplify the following :
(i) $\frac{(\cos 2\theta - i \sin 2\theta)^{7}(\cos 3\theta + i \sin 3\theta)^{5}}{(\cos 5\theta - i \sin 5\theta)^{3}(\cos 7\theta - i \sin 7\theta)^{2}}$ (ii) $\frac{i^{5}(\sin 2\theta + i \cos 2\theta)}{(\cos \theta - i \sin \theta)^{2}}$
2. If $\mathbf{x} = \cos \theta + i \sin \theta$ and $\sqrt{1 - e^{2}} = nc - 1$, show that $1 + \cos \theta = \frac{c}{2n} (1 + nx) (1 + \frac{n}{x})$.

3. If $x + (1/x) = 2 \cos \theta$ and $y + (1/y) = 2 \cos \phi$ etc, then prove that

(i)
$$xyz...+\frac{1}{xyz}...=2\cos(\theta+\phi+...)$$
 (ii) $\frac{x}{y}+\frac{y}{x}=2\cos(\theta-\phi)$

(iii)
$$x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\theta + n\phi)$$
 (iv) $\frac{x^m}{y^n} + \frac{y^n}{x^m} = 2\cos(m\theta - n\phi)$

[Answers : 1 (i) 1 (ii) -1]

C7 Cube Root of Unity :

- The cube root of unity are $1, \frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}$ (i)
- (ii) If ω is one of the imaginary cube roots of unity then $1 + \omega + \omega^2 = 0$. In general $1 + \omega^r + \omega^{2r} = 0$; where $r \in I$ but is not the multiple of 3.

(iii) In polar form the cube roots of unity are :
$$\cos 0 + i \sin 0$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- The three cube roots of unity when plotted on the argand plane constitute the varties of an (iv) equilateral triangle.
- The following factorisation should be remembered : (v) (a, b, c \in R and ω is the cube root of unity) $a^{3} - b^{3} = (a - b) (a - \omega b) (a - \omega^{2} b)$; $a^{2} + a + 1 = (a - \omega) (a - \omega^{2})$ $a^{3} + b^{3} = (a + b) (a + \omega b) (a + \omega^{2} b)$; $a^{2} + ab + b^{2} = (a - b\omega) (a - b\omega^{2})$ $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c) (a + \omega b + \omega^{2}c) (a + \omega^{2}b + \omega c)$

Practice Problems :

1. If 1,
$$\omega$$
, ω^2 are the cube roots of unity, prove that

(i)
$$(1 - \omega + \omega^2) (1 + \omega - \omega^2) = 4$$
 (ii) $(1 + \omega) (1 + \omega^2) (1 + \omega^4) (1 + \omega^8) = 1$

(iii)
$$(2 + 5\omega + 2\omega^2)^6 = (2 + 2\omega + 5\omega^2)^6 = 729$$

$$(iv) \qquad (1-\omega+\omega^2) \left(1-\omega^2+\omega^4\right) \left(1-\omega^4+\omega^8\right) \text{.....to } 2n \text{ factors} = 2^{2n}.$$

(v)
$$1 + \omega^n + \omega^{2n} = \begin{cases} 3, \text{ when n is a multiple of } 3\\ 0, \text{ when n is not a multiple of } 3 \end{cases}$$

(vi)
$$(a + \omega + \omega^2) (a + \omega^2 + \omega^4) (a + \omega^4 + \omega^8)$$
....to 2n factors. = $(a - 1)^{2n}$

(vii)
$$\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} + \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} = -1$$

2. If
$$\omega$$
 and ω^2 are complex cube roots of unity, prove that

$$x^{3} + y^{3} = (x + y) (\omega x + \omega^{2} y) (\omega^{2} x + \omega y)$$
 (ii) $x^{3} - y^{3} = (x - y) (\omega x - \omega^{2} y) (\omega^{2} x - \omega y)$

3. If
$$\omega$$
 is an imaginary cube root of unity, prove that $\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$.

Given $z_1 + z_2 + z_3 = A$, $z_1 + z_2\omega + z_3\omega^2 = B$, $z_1 + z_2\omega^2 + z_3\omega = C$ where ω is cube root of unity 4.

(i) express
$$z_1, z_2, z_3$$
 in terms of A, B, C

(ii) prove that
$$|\mathbf{A}|^2 + |\mathbf{B}|^2 + |\mathbf{C}|^2 = 3(|\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 + |\mathbf{z}_3|^2)$$

[Answers: (4)
$$z_1 = \frac{A + B + C}{3}$$
, $z_2 = \frac{A + B\omega^2 + C\omega}{3}$, $z_3 = \frac{A + B\omega + C\omega^2}{3}$]

C8 nth Roots of Unity :

If 1, $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-1}$ are the n, nth root of unity then :

- (i) They are in G.P. with common ratio $e^{i(2\pi/n)}$
- (ii) $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$, if p is not an integral multiple of n
 - = n if p is an integral multiple of n
- (iii) $(1 \alpha_1)(1 \alpha_2) \dots (1 \alpha_{n-1}) = n$ $(1 + \alpha_1)(1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd.
- (iv) $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \dots \dots \alpha_{n-1} = 1$ or -1 according as n is odd or even.

Practice Problems :

1. If 1, $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ are the nth roots of unity and n is an odd natural number then find the value of $(1 + \alpha_1)$ $(1 + \alpha_2)(1 + \alpha_3) \dots (1 + \alpha_{n-1})$.

C9 Rotation theorem

(i) If $P(z_1)$ and $Q(z_2)$ are two complex numbers such that $|z_1| = |z_2|$, then $z_2 = z_1 e^{i\theta}$ where $\theta = \angle POQ$

(ii) If $P(z_1)$, $Q(z_2)$ and $R(z_3)$ are three complex numbers and $\angle PQR = \theta$, then

$$\left(\frac{\mathbf{z}_3 - \mathbf{z}_2}{\mathbf{z}_1 - \mathbf{z}_2}\right) = \left|\frac{\mathbf{z}_3 - \mathbf{z}_2}{\mathbf{z}_1 - \mathbf{z}_2}\right| \mathbf{e}^{\mathbf{i}\theta}$$

 $Q(z_3)$ θ $P(z_1)$

Practice Problems : (

- 1. If z_1, z_2, z_3 are vertices of an equilateral Δ having its circumcentre at origin such that $z_1 = 1 + i$ then find z_2 and z_3 .
- 2. Show that the triangle whose vertices are the points represented by the complex numbers z_1 , z_2 , z_3 on the

Argand plane is equilateral if and only if $\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0$, that is if and only if $z_1^2 + z_2^2$

$$+\mathbf{Z}_{3}^{2}=\mathbf{Z}_{1}\mathbf{Z}_{2}+\mathbf{Z}_{2}\mathbf{Z}_{3}+\mathbf{Z}_{3}\mathbf{Z}_{1}.$$

- 3. If z_1, z_2, z_3 be the affixes of the vertices A, B and C respectively of a triangle ABC having centroid at G. such that z = 0 is the mid-point of AG, then prove that $4z_1 + z_2 + z_3 = 0$.
- 4. (a) Complex numbers z_1, z_2, z_3 are the vertices A,B,C respectively of an isosceles right angled triangle with right angle at C. Show that $(z_1 z_2)^2 = 2(z_1 z_3)(z_3 z_2)$
 - (b) If $z_1^2 + z_2^2 2z_1z_2 \cos \theta = 0$ then the origin z_1, z_2 form vertices of an isosceles triangle with vertical angle θ .

5. Show that the triangle whose vertices are z_1, z_2, z_3 and Z_1, Z_2, Z_3 are directly similar if

$$\begin{vmatrix} z_1 & z'_1 & 1 \\ z_2 & z'_2 & 1 \\ z_3 & z'_3 & 1 \end{vmatrix} = 0$$

C10 Logarithm of a Complex Quantity :

(i)
$$\operatorname{Log}_{e}(\alpha + i\beta) = \frac{1}{2}\operatorname{Log}_{e}(\alpha^{2} + \beta^{2}) + i\left(2n\pi + \tan^{-1}\frac{\beta}{\alpha}\right)$$
 where $n \in I$

(ii) iⁱ represents a set of positive real numbers given by $e^{-(2i\pi + \frac{1}{2})}$, $n \in$

C11 Geometrical Properties :

- (i) **Distance Formula :** If z_1 and z_2 are affixies of the two points P and Q respectively then distance between P and Q is given by $|z_1 z_2|$
- (ii) Section Formula : If z_1 and z_2 are affixes of the two points P and Q respectively and point C divides the line joining P and Q internally in the ratio m : n then affix z to C is given by

$$z = \frac{mz_2 + nz_1}{m+n}$$

If C divides PQ in the ratio m : n externally then $z = \frac{mz_2 - nz_1}{m}$

(iii) Condition of collinearty :

If a, b, c are three real numbers such that $az_1 + bz_2 + cz_3 = 0$; where a + b + c = 0 and a, b, c are not all simultaneoulsy zero, then the complex numbers z_1 , z_2 and z_3 are collinear.

Important Results :

(1) If the vertices A, B, C of a triangle represents the complex numbers z_1, z_2, z_3 respectively and a, b, c are the length of sides then,

(i) Centroid of the
$$\triangle ABC = \frac{z_1 + z_2 + z_3}{3}$$

(ii) Orthocenter of the
$$\triangle ABC =$$

$$\frac{(\operatorname{asec} A)z_1 + (\operatorname{bsec} B)z_2 + (\operatorname{csec} C)z_3}{\operatorname{asec} A + \operatorname{bsec} B + \operatorname{csec} C} \text{ or } \frac{z_1 \tan A + z_2 \tan B + z_3 \tan C}{\tan A + \tan B + \tan C}$$

(iii) Incentre of the $\triangle ABC = (az_1 + bz_2 + cz_3) / (sin 2A + sin 2B + sin 2C)$

amp (z) = θ is a ray emanating from the origin inclined at an angle θ to the x-axis.

$$|z - z_1| = |z - z_2|$$
 is the perpendicular bisector of the line joining z_1 to z_2

- The equation of a line joining z_1 and z_2 is given by, $z = z_1 + t(z_1 z_2)$ where t is a real parameter.
- (5) $z = z_1(1 + it)$ where t is a real parameter is a line through the point z_1 & perpendicular to the line joining z_1 to the origin.
- (6) The equation of a line passing through z_1 and z_2 can be expressed in the determinant form as

 $\begin{bmatrix} z & z & 1 \\ z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \end{bmatrix} = 0$. This is also the condition for three complex numbers to be collinear. The

25.0

above equation on manipulating, takes the form $\alpha z + \alpha z + r = 0$ where r is real and α is a non zero complex constant.

- (7)The equation of circle having centre z_0 and radius r is : $|z - z_0| = r$ General equation of the circle $z\overline{z} + a\overline{z} + \overline{a}z + b = 0$ where a is a complex number and b is real number. Centre of the circle is –a and radius is $\sqrt{|\mathbf{a}|^2 - \mathbf{b}}$.
- The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is (8)

$$\arg \frac{z - z_2}{z - z_1} = \pm \frac{\pi}{2} \text{ or } (z - z_1)(\overline{z} - \overline{z}_2) + (z - z_2)(\overline{z} - \overline{z}_1) = 0.$$

Condition for four given points $z_1, z_2, z_3 \& z_4$ to be concyclic is the number $\frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z_4 - z_2}{z_4 - z_1}$ (9) should be real. Hence the equation of a circle through 3 non collinear points z_1 , z_2 & z_3 can be

taken as
$$\frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)}$$
 is real

$$\Rightarrow \qquad \frac{(\mathbf{z}-\mathbf{z}_2)(\mathbf{z}_3-\mathbf{z}_1)}{(\mathbf{z}-\mathbf{z}_1)(\mathbf{z}_3-\mathbf{z}_2)} = \frac{(\mathbf{z}-\mathbf{z}_2)(\mathbf{z}_3-\mathbf{z}_1)}{(\mathbf{z}-\mathbf{z}_1)(\mathbf{z}_3-\mathbf{z}_2)}$$

(10)
$$\operatorname{Arg}\left(\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{z}-\mathbf{z}_2}\right) = \mathbf{\theta}$$
 represent

a line segment if $\theta = \pi$ (i)

(ii) Pair of ray if
$$\theta = 0$$

a part of circle, if $0 < \theta < \pi$ (iii)

(10)
$$\operatorname{Arg}\left(\frac{\mathbf{z} - \mathbf{z}_{1}}{\mathbf{z} - \mathbf{z}_{2}}\right) = \boldsymbol{\theta} \text{ represent}$$
(i) a line segment if $\boldsymbol{\theta} = \pi$
(ii) Pair of ray if $\boldsymbol{\theta} = 0$
(iii) a part of circle, if $0 < \boldsymbol{\theta} < \pi$
(11) Area of triangle formed by the points $\mathbf{z}_{1}, \mathbf{z}_{2} \& \mathbf{z}_{3}$ is $\begin{vmatrix} \mathbf{1} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \\ \mathbf{z}_{2} \\ \mathbf{z}_{3} \\ \mathbf{z}_{3} \\ \mathbf{z}_{3} \\ \mathbf{1} \end{vmatrix}$

Perpendicular distance of a point z_0 from the line $\alpha z + \alpha z + r = 0$ is $\frac{|\alpha z_0 + \alpha z_0 + r|}{2|\alpha|}$ (12)

(13) (i) Complex slope of a line
$$\overline{\alpha z} + \alpha \overline{z} + r = 0$$
 is $\omega = -\frac{\alpha}{\overline{\alpha}}$

Complex slope of a line joining by the points $z_1 \& z_2$ is $\omega = \frac{z_1 - z_2}{z_1 - z_2}$ (ii)

Complex slope of a line makine θ angle with real axis = $e^{2i\theta}$ (iii)

- $\omega_1 \& \omega_2$ are the complex slopes of two lines. (i) If lines are parallel then $\omega_1 = \omega_2$
- (ii) If lines are perpendicular then $\omega_1 + \omega_2 = 0$

(15) If
$$|z - z_1| + |z - z_2| = K > |z_1 - z_2|$$
 then locus of z is an ellipse whose focii are $z_1 \& z_2$

If $|z - z_0| = \left| \frac{\alpha z + \alpha z + r}{2 |\alpha|} \right|$ then locus of z is parabola whose focus is z_0 and directrix is the line (16) $\overline{\alpha}z_0 + \overline{\alpha}z_0 + r = 0$

(17) If
$$\left| \frac{\mathbf{z} - \mathbf{z}_1}{|\mathbf{z} - \mathbf{z}_2|} \right| = \mathbf{k}$$
 where $\mathbf{k} \neq 0$ or 1 then locus of z is circle.

(18) If
$$||z - z_1| - |z - z_2|| = K < |z_1 - z_2|$$
 then locus of z is a hyperbola, whose focii are $z_1 \& z_2$.
C12 (a) Reflection points for a straight line :

Two given points P & Q are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers

 $z_1 \& z_2$ will be the reflection points for the straight line $\alpha z + \alpha z + r = 0$ if and only if;

 $\alpha z_1 + \alpha z_2 + r = 0$, where r is real and α is non zero complex constant.

(b) Inverse points w.r.t. a circle :

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius p, if :

the point O, P, Q are collinear and P, Q are on the same side of O. (i)

(ii) OP . OQ =
$$\rho^2$$
.

The two points $z_1 \& z_2$ will be the inverse points w.r.t. the circle $zz + \alpha z + \alpha z + r = 0$ if and only if $\overline{z_1 z_2} + \alpha \overline{z_1} + \alpha \overline{z_2} + r = 0$

Practice Problems :

- Find the radius and centre of the circle $z\overline{z} + (1-i)z + (1+i)\overline{z} 7 = 0$ 1.
- 2. Determine the value of k for which equation $z\overline{z} + (-3+4i)\overline{z} - (3+4i)z + k = 0$ represent a circle.
- Show that the points representing the complex numbers (3 + 2i), (2 i) and -7i are collinear. 3.
- Find the perpendicular bisector of 3 + 4i and -5 + 6i. 4.
- 5. If z₁, z₂, z₃ are the affixes of the vertices of a triangle having its circumcentres at the origin. If z is the affix of its orthocentre then prove that $z_1 + z_2 + z_3 - z = 0$
- 6. Find the locus of a complex number z in the Argand plane, satisfying |z - (1 + i)| = 5.
- Show that the locus of a complex number z satisfying $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$ is a circle. Find the equation of 7.

the circle in cartesian coordinates.

- Locate the points in the Argand plane representing the complex numbers z = x + iy for which 8. |z + 1| + |z - 1| < 3(i)
 - $\arg(z-4-i)=\frac{\pi}{6}$ (ii)
 - |z-1| + |z+1| = 4(iii)
 - $\arg(z + i) \arg(z i) = \pi/2$ (iv)

Find the locus of the complex number z in the Argand plane if $\frac{|1-iz|}{|z-i|} = 1$. 9.

If z = x + iy and $\omega = \frac{1 - zi}{z - i}$, $|\omega| = 1$, then find the locus of z. 10.

> Answers : (1) (-1, -1), 3 (2) $k \le 25$ (4) $(8+2i)z + (8-2i)\overline{z} + 36 = 0$ (6) Circle (7) $x^2 + y^2 = 1$ (8) (i) Interior of the ellipse having foci at (1, 0) and (-1, 0) and major axis of length 3 units (ii) A straight line passing through (4, 1) and making an angle of $\pi/6$ with x-axis (iii) Ellipse with foci at 1 + 0.i and -1 + 0.i and centre at origin (iv) Locus of point z is a circle with diameter AB and centre at origin with radius 1 (10) z lies on the real axis]

C13 Ptolemy's Theorem :

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the products of lengths of the two pairs of its opposite sides.

i.e.
$$|z_1 - z_3| |z_2 - z_4| = |z_1 - z_2| |z_3 - z_4| + |z_1 - z_4| |z_2 - z_3|.$$