Complex Number Contracts Free Aumber Complex Number

Einstein Classes, *Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi – 110 018, Ph. : 9312629035, 8527112111*

C3 Modulus of a Complex Number :

If $z = a + ib$, then it's modulus is denoted and defined by $|z| = \sqrt{a^2 + b^2}$. Infact |z| is the distance of z from origin.

Properties of modulus

(i)
$$
|z_1 z_2| = |z_1| |z_2|
$$
 (ii) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ (provide $z_2 \neq 0$)

 (iii) $+\operatorname{\mathbf{Z}}_2|\leq |\operatorname{\mathbf{Z}}_1|+|\operatorname{\mathbf{Z}}_2$ (iv) $- \left. \mathbf{z}_{\mathbf{2}} \right| \geq \left\| \mathbf{z}_{\mathbf{1}} \right| - \left| \mathbf{z}_{\mathbf{2}} \right\|$

(Equality in (iii) and (iv) holds if and only if origin, z_1 and z_2 are collinear with z_1 and z_2 on the same side of origin).

C4 Representation of a Complex Number :

(a) Cartesian Form (Geometric Representation) :

Every complex number $z = x + i y$ can be represented by a point on the Cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y)

 θ is called the argument or amplitude. If θ is the argument of a complex number then $2 \text{ n}\pi + \theta$; $n \in I$ will also be the argument of that complex number. The unique value of θ such that $-\pi < \theta \leq \pi$ is called the principal value of the argument. Unless otherwise stated, amp z implies principal value of the argument.

 $-\pi + \theta, -\theta, \theta = \tan^{-1} \left| \frac{\mathbf{y}}{\mathbf{x}} \right|$, according as $\mathbf{z} = \mathbf{x} + \tan \theta, -\theta, \theta = \tan^{-1} \left| \frac{\mathbf{y}}{\mathbf{x}} \right|$, according as $\mathbf{z} = \mathbf{x} + \tan \theta$
From Equality Equality Equality Equality Equality Equation 2.
For some integer m. The argument of $z = \theta$, $\pi - \theta$, $-\pi + \theta$, $-\theta$, $\theta = \tan^{-1}$ **y** , according as $z = x + iy$ lies in I, II, III or IVth

quadrant.

Properties of Argument of a Complex Number :

- (i) $\arg (z_1 z_2) = \arg (z_1) + \arg (z_2) + 2m\pi$ for some integer m.
- (ii) $arg (z_1/z_2) = arg (z_1) arg (z_2) + 2m\pi$ for some integer m.
- (iii) $arg(z^2) = 2arg(z) + 2m\pi$ for some integer m.
- (iv) $arg(z) = 0$ \Leftrightarrow z is real, for any complex number $z \neq 0$
- (v) $arg (z) = \pm \pi/2$ \Leftrightarrow z is purely imaginary, for any complex number $z \neq 0$
- (vi) arg $(z_2 z_1)$ = angle of the line segment joining the point (z_1) and point (z_2)

(b) Trignometric/Polar Representation :

 $z = r (\cos \theta + i \sin \theta)$ where $|z| = r$; $\arg z = \theta$; $\bar{z} = r(\cos \theta - i \sin \theta)$

 $\cos \theta + i \sin \theta$ is also written as CiS θ or $e^{i\theta}$.

(c) Euler's Representation :

$$
z = re^{i\theta}; |z| = r; arg z = \theta; \overline{z} = re^{-i\theta}
$$

Also $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ $=\frac{e^{ix}+e^{-ix}}{2}$ and $\sin x = \frac{e^{ix}-e^{-ix}}{2}$ $=\frac{e^{ix}-e^{-ix}}{2}$ are known as Euler's identities.

(d) Vectorial Representation :

Every complex number can be considered as if it is the position vector of a point. If the point P represents the complex number z then, $\overrightarrow{OP} = z \& |\overrightarrow{OP}| = |z|$.

Practice Problems :

1. If
$$
|z| = 4
$$
 and $\arg z = \frac{5\pi}{6}$ then z equals to
\n(a) $2\sqrt{3} - 2i$ (b) $2\sqrt{3} + 2i$ (c) $-2\sqrt{3} + 2i$ (d) $-\sqrt{3} + i$
\n2. If $x_z = \cos(\frac{\pi}{2^z}) + i \sin(\frac{\pi}{2^z})$ then
\n $x_x \cdot x_y \cdot x_x \cdot \dots \infty$ is
\n(a) -3 (b) -2 (c) -1 (d) 0
\n3. The amplitude or argument of $\frac{(1+i)(2+i)}{(3-i)}$ will be
\n(a) 0 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{6}$
\n[Answers: (1) c (2) c (3) c]
\nC5 Conjugate of a complex Number
\nConjugate of a complex number $z = a + ib$ is denoted and defined by $\overline{z} = a - ib$.
\nProperties of conjugate
\n(i) $|z_1 = |\overline{z}|$ (ii) $z\overline{z} = |z|^2$ (iii) $(\overline{z_1 + z_2}) = (\overline{z_1} + (\overline{z_2})$
\n(iv) $\overline{(z_1 - z_2)} = (\overline{z_1} - (\overline{z_2})$ (v) $(\overline{z_1 z_2}) = (\overline{z_1}) (\overline{z_2})$ (vi) $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{(\overline{z_1}}{(\overline{z_2})} (z_2 \neq 0)$
\n(vii) $|z_1 + z_2|^2 = (z_1 + z_2)(z_1 + z_2) = |z_1|^2 + |z_2|^2 + |z_1z_2 + z_1z_2$ (viii) $\overline{(z)} = z$
\n(c) Demotiver's Theorem:
\nIf n is any integer then
\n(i) $(\cos \theta + i \sin \theta)^0$ (cos $\theta + i \sin \theta$)
\n(ii) $(\cos \theta + i \sin \theta)^3$ (cos $\$

3. If $x + (1/x) = 2 \cos \theta$ and $y + (1/y) = 2 \cos \phi$ etc, then prove that

(i)
$$
xyz....+\frac{1}{xyz}....=2cos(\theta+\phi+...)
$$
 (ii) $\frac{x}{y}+\frac{y}{x}=2cos(\theta-\phi)$

$$
\textbf{(iii)} \quad x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\theta + n\phi) \qquad \qquad \textbf{(iv)} \qquad \frac{x^m}{y^n} + \frac{y^n}{x^m} = 2\cos(m\theta - n\phi)
$$

[Answers : 1 (i) 1 (ii) –1]

C7 Cube Root of Unity :

(i) The cube root of unity are
$$
1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}
$$

(ii) If ω is one of the imaginary cube roots of unity then $1 + \omega + \omega^2 = 0$. In general $1 + \omega^2 + \omega^{2} = 0$; where $r \in I$ but is not the multiple of 3.

(iii) In polar form the cube roots of unity are :
$$
\cos 0 + i \sin 0
$$
; $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$, $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$

- (iv) The three cube roots of unity when plotted on the argand plane constitute the varties of an equilateral triangle.
- (v) The following factorisation should be remembered :

\n- \n (i) The cube root of unity are \n
$$
1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}
$$
\n
\n- \n (ii) If ω is one of the imaginary cube roots of unity then \n $1 + \omega + \omega^2 = 0$. In general \n $1 + \omega + \omega^2 = 0$; \n where $r \in I$ but is not the multiple of 3.\n
\n- \n (iii) In polar form the cube roots of unity are:\n $\cos 0 + i \sin 0; \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}, \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ \n
\n- \n (iv) The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle.\n
\n- \n (v) The following factorisation should be remembered:\n
	\n- \n (a, b, c ∈ R and ω is the cube root of unity)\n $a^2 + a + 1 = (a - \omega)(a - \omega^2)$ \n $a^3 + b^3 = (a + b)(a + \omega b)(a + \omega^2 b)$ \n $a^3 + ab + b^2 = (a - b\omega)(a - \omega^2)$ \n $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a + \omega b + \omega^2 c)(a + \omega^3 b + \omega c)$ \n
	\n\n
\n- \n**Practice Problems:**\n
	\n- \n (i) $(1 - \omega + \omega^2)(1 + \omega - \omega^2) = 4$ \n
	\n- \n (ii) $(1 - \omega + \omega^2)(1 + \omega - \omega^2) = 4$ \n
	\n- \n (iii) $(2 + 5\omega + 2\omega^2)^6 = (2 + 2\omega + 5\omega^2)^6 = 729$ \n
	\n- \n (iv) $(1 - \omega + \omega^2)(1 + \omega - \omega^2) = 4$ \n
	\n- \n (v) $1 + \omega^2 + \omega^2 = (2 + 2\omega + 5\omega^2$

$$
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)
$$

Practice Problems :

1. If
$$
1, \omega, \omega^2
$$
 are the cube roots of unity, prove that

(i)
$$
(1 - \omega + \omega^2)(1 + \omega - \omega^2) = 4
$$
 (ii) $(1 + \omega)(1 + \omega^2)(1 + \omega^4)(1 + \omega^8) = 1$

(iii)
$$
(2 + 5\omega + 2\omega^2)^6 = (2 + 2\omega + 5\omega^2)^6 = 729
$$

(iv)
$$
(1 - \omega + \omega^2) (1 - \omega^2 + \omega^4) (1 - \omega^4 + \omega^8)
$$
........to 2n factors = 2²ⁿ.

$$
1 + \omega^{n} + \omega^{2n} = \begin{cases} 3, \text{ when n is a multiple of 3} \\ 0, \text{ when n is not a multiple of 3} \end{cases}
$$

(v)
$$
1 + \omega + \omega = 0
$$
, when n is not a multiple of 3

(vi)
$$
(a + \omega + \omega^2) (a + \omega^2 + \omega^4) (a + \omega^4 + \omega^8) \dots
$$
 to 2n factors. = $(a - 1)^{2n}$

(vii)
$$
\frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} + \frac{a + b\omega + c\omega^2}{b + c\omega + a\omega^2} = -1
$$

2. If
$$
\omega
$$
 and ω^2 are complex cube roots of unity, prove that

(i)
$$
x^3 + y^3 = (x + y) (\omega x + \omega^2 y) (\omega^2 x + \omega y)
$$
 (ii) $x^3 - y^3 = (x - y) (\omega x - \omega^2 y) (\omega^2 x - \omega y)$

3. If
$$
\omega
$$
 is an imaginary cube root of unity, prove that $\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$.

4. Given
$$
z_1 + z_2 + z_3 = A
$$
, $z_1 + z_2 \omega + z_3 \omega^2 = B$, $z_1 + z_2 \omega^2 + z_3 \omega = C$ where ω is cube root of unity

(i) express
$$
z_1
$$
, z_2 , z_3 in terms of A, B, C

(ii) prove that
$$
|A|^2 + |B|^2 + |C|^2 = 3(|z_1|^2 + |z_2|^2 + |z_3|^2)
$$

[Answers: (4)
$$
z_1 = \frac{A+B+C}{3}
$$
, $z_2 = \frac{A+B\omega^2+C\omega}{3}$, $z_3 = \frac{A+B\omega+C\omega^2}{3}$]

C8 nth Roots of Unity :

If $1, \alpha_1, \alpha_2, \alpha_3 \dots \dots \alpha_{n-1}$ are the n, nth root of unity then :

- (i) They are in G.P. with common ratio $e^{i(2\pi/n)}$
- (ii) $p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$, if p is not an integral multiple of n
	- $=$ n if p is an integral multiple of n
- (iii) $(1 \alpha_1) (1 \alpha_2) \dots (1 \alpha_{n-1}) = n$ $(1 + \alpha_1) (1 + \alpha_2) (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd.
- (iv) $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{n-1} = 1 \text{ or } -1 \text{ according as n is odd or even.}$

Practice Problems :

1. If $1, \alpha_1, \alpha_2, ..., \alpha_{n-1}$ are the nth roots of unity and n is an odd natural number then find the value of $(1+\alpha_1)$ $(1 + \alpha_2) (1 + \alpha_3) \dots (1 + \alpha_{n-1}).$

C9 Rotation theorem

(i) If P(z_1) and Q(z_2) are two complex numbers such that $|z_1| = |z_2|$, then $z_2 = z_1 e^{i\theta}$ where $\theta = \angle POQ$

(ii) If $P(z_1)$, $Q(z_2)$ and $R(z_3)$ are three complex numbers and $\angle PQR = \theta$, then

$$
\left(\frac{\mathbf{z}_3 - \mathbf{z}_2}{\mathbf{z}_1 - \mathbf{z}_2}\right) = \left|\frac{\mathbf{z}_3 - \mathbf{z}_2}{\mathbf{z}_1 - \mathbf{z}_2}\right| e^{i\theta}
$$

Fig. 1

complex numbers and $\angle PQR = \theta$, then
 $e^{i\theta}$
 $R(z_3)$
 $Q(z_3)$ $\triangle \theta$
 $P(z_1)$

Lateral \triangle having its circumcentre at origin such

Practice Problems :

- **1.** If z_1 , z_2 , z_3 are vertices of an equilateral Δ having its circumcentre at origin such that $z_1 = 1 + i$ then find z_2 and z ₃.
- **2.** Show that the triangle whose vertices are the points represented by the complex numbers z_1 , z_2 , z_3 on the

(iv) 1. $a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_9, a_1, a_2, a_3, a_4, a_5, a_7, a_8, a_9, a_9, a_1, a_1, a_2, a_3, a_1, a_1, a_2, a_3, a_1, a_1, a_2, a_3, a_1, a_2, a_3, a_1, a_1, a_2, a_3, a_1, a_2, a_3,$ **Argand plane is equilateral if and only if** $\frac{1}{Z_2 - Z_3} + \frac{1}{Z_3 - Z_1} + \frac{1}{Z_1 - Z_2} = 0$ 1 $\overline{z}_3 - \overline{z}$ 1 $z_2 - z$ 1 2 ϵ_3 ϵ_3 ϵ_1 ϵ_1 ϵ_2 $=$ - $^{+}$ - $\ddot{}$ $\frac{1}{1-z_1} + \frac{1}{z_1 - z_2} + \frac{1}{z_1 - z_2} = 0$, that is if and only if $z_1^2 + z_2^2$ $+ z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$

- **3. If z¹ , z2 , z3 be the affixes of the vertices A, B and C respectively of a triangle ABC having centroid at G. such that z** = 0 is the mid-point of AG, then prove that $4z_1 + z_2 + z_3 = 0$.
- **4. (a) Complex numbers z¹ , z2 , z3 are the vertices A,B,C respectively of an isosceles right angled triangle with right angle at C. Show that** $(z_1 - z_2)^2 = 2 (z_1 - z_3) (z_3 - z_2)$
	- (b) If $z_1^2 + z_2^2 2z_1z_2 \cos \theta = 0$ then the origin z_1 , z_2 form vertices of an isosceles triangle with **vertical angle .**

5. Show that the triangle whose vertices are z_1, z_2, z_3 and $\overline{z}_1, \overline{z}_2, \overline{z}_3$ are directly similar if

$$
\begin{vmatrix} z_1 & z_1 & 1 \ z_2 & z_2 & 1 \ z_3 & z_3 & 1 \ \end{vmatrix} = 0.
$$

C10 Logarithm of a Complex Quantity :

(i)
$$
Log_e(\alpha + i\beta) = \frac{1}{2}Log_e(\alpha^2 + \beta^2) + i\left(2n\pi + \tan^{-1}\frac{\beta}{\alpha}\right) \text{where } n \in I
$$

 (ii) \mathbf{F} represents a set of positive real numbers given by \mathbf{e} \mathbf{F} \mathbf{F} \mathbf{F} $\left(\frac{2n\pi + \frac{n}{2}}{2} \right)$ \in $\left(2n\pi+\frac{\pi}{2}\right)$ $-\left(2n\pi+\frac{\pi}{2}\right)$

C11 Geometrical Properties :

- (ii) Frepresents a set of positive real numbers given by $e^{2\pi i/2}$, $n \in I$
 CLI Geometrical Properties :

(i) **Distance Formula** : If z_1 and z_2 are affixes of the two points P and Q respectively then distance

((i) **Distance Formula :** If z_1 and z_2 are affixies of the two points P and Q respectively then distance between P and Q is given by $|z_1 - z_2|$
	- (ii) **Section Formula :** If z_1 and z_2 are affixes of the two points P and Q respectively and point C divides the line joining P and Q internally in the ratio m : n then affix z to C is given by

$$
z = \frac{mz_2 + nz_1}{m+n}
$$

If C divides PQ in the ratio m : n externally then **z** \mathbf{m} \rightarrow \mathbf{n} $mz_2 - nz_1$ ÷

(iii) Condition of collinearty :

Fraction : n externally then $\mathbf{z} = \frac{\mathbf{m} \mathbf{z}_2 - \mathbf{n} \mathbf{z}_1}{\mathbf{m} - \mathbf{n}}$
 Fracty :
 Fraction Equality that $\mathbf{a} \mathbf{z}_1 + \mathbf{b} \mathbf{z}_2 + \mathbf{c} \mathbf{z}_3 = 0$; where a
 Fraction Equality Equality 2.1 and $\mathbf{z}_$ If a, b, c are three real numbers such that $az_1 + bz_2 + cz_3 = 0$; where $a + b + c = 0$ and a, b, c are not all simultaneoulsy zero, then the complex numbers z_1 , z_2 and z_3 are collinear.

Important Results :

(1) If the vertices A, B, C of a triangle represents the complex numbers z_1, z_2, z_3 respectively and a, b, c are the length of sides then,

(i) Centroid of the
$$
\triangle ABC = \frac{z_1 + z_2 + z_3}{3}
$$

(ii) Orthocenter of the
$$
\triangle ABC
$$
 =

$$
\frac{(a\sec A)z_1 + (b\sec B)z_2 + (c\sec C)z_3}{a\sec A + b\sec B + c\sec C} \text{ or } \frac{z_1\tan A + z_2\tan B + z_3\tan C}{\tan A + \tan B + \tan C}
$$

(iii) Incentre of the $\triangle ABC = (az_1 + bz_2 + cz_3) / (\sin 2A + \sin 2B + \sin 2C)$

 $amp(z) = \theta$ is a ray emanating from the origin inclined at an angle θ to the x-axis.

(3)
$$
|z - z_1| = |z - z_2|
$$
 is the perpendicular bisector of the line joining z_1 to z_2 .

- (4) The equation of a line joining z_1 and z_2 is given by, $z = z_1 + t(z_1 z_2)$ where t is a real parameter.
- (5) $z = z_1(1 + it)$ where t is a real parameter is a line through the point $z_1 \&$ perpendicular to the line joining z_1 to the origin.
- (6) The equation of a line passing through z_1 and z_2 can be expressed in the determinant form as

0 z_2 z_2 1 z_1 z_1 1 **z z 1 2 1 ¹ .** This is also the condition for three complex numbers to be collinear. The**2**

above equation on manipulating, takes the form $\alpha z + \alpha z + r = 0$ where r is real and α is a non zero complex constant.

- (7) The equation of circle having centre z_0 and radius r is : $|z z_0| = r$ General equation of the circle $z\overline{z} + a\overline{z} + b\overline{z} + b = 0$ where a is a complex number and b is real number. Centre of the circle is $-a$ and radius is $\sqrt{|\mathbf{a}|^2 - \mathbf{b}}$.
- (8) The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is

$$
\arg \frac{z-z_2}{z-z_1} = \pm \frac{\pi}{2} \text{or} \, (z-z_1)(\overline{z}-\overline{z}_2) + (z-z_2)(\overline{z}-\overline{z}_1) = 0 \, .
$$

(9) Condition for four given points z_1 , z_2 , z_3 & z_4 to be concyclic is the number $4 - 4$ $4 - 2$ $3 - 2$ $3 - 4$ $z_4 - z$ $\frac{z_3 - z_1}{z_3 - z_2} \cdot \frac{z_4 - z_4}{z_4 - z_4}$ $\mathbf{z}_3 - \mathbf{z}$ ÷ --should be real. Hence the equation of a circle through 3 non collinear points z_1 , $z_2 \& z_3$ can be , $z_2 \& z_3$

taken as
$$
\frac{(\mathbf{z}-\mathbf{z}_2)(\mathbf{z}_3-\mathbf{z}_1)}{(\mathbf{z}-\mathbf{z}_1)(\mathbf{z}_3-\mathbf{z}_2)}
$$
 is real

$$
\Rightarrow \qquad \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} = \frac{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}
$$

(10)
$$
Arg\left(\frac{z-z_1}{z-z_2}\right) = \theta
$$
 represent

(i) a line segment if $\theta = \pi$

(ii) Pair of ray if
$$
\theta = 0
$$

(iii) a part of circle, if $0 < \theta < \pi$

should be real. Hence the equation of a circle through 3 non collinear points
$$
z_1
$$
, z_2 & $z_4 = z_1$
\ntaken as $\frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)}$ is real
\n $\Rightarrow \frac{(z-z_2)(z_3-z_1)}{(z-z_1)(z_3-z_2)} = \frac{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}$
\n(10) $\text{Arg}\left(\frac{z-z_1}{z-z_2}\right) = \theta$ represent
\n(ii) a line segment if $\theta = \pi$
\n(iii) a part of circle, if $0 < \theta < \pi$
\n(iiii) a part of circle, if $0 < \theta < \pi$
\n(11) Area of triangle formed by the points z_1 , z_2 , & z_3 is $\frac{z_1}{4!} \begin{bmatrix} z_1 & z_1 & 1 \\ z_2 & z_2 & 1 \\ z_3 & z_3 & 1 \end{bmatrix}$
\n(12) Perpendicular distance of a point z_0 from the line $\overline{\alpha}z + \alpha \overline{z} + \overline{r} = 0$ is $\overline{\alpha} = -\frac{\alpha}{\overline{\alpha}}$
\n(ii) Complex slope of a line joining by the points z_1 , & z_2 is $\alpha = \frac{z_1 - z_2}{2|\alpha|}$
\n(iii) Complex slope of a line joining by the points z_1 , & z_2 is $\alpha = \frac{z_1 - z_2}{1 - z_2}$
\n(ii) Complex slope of a line making θ angle with real axis = $e^{2i\theta}$
\n(i) α , & α_2 are the complex slopes of two lines.
\n(j) If lines are parallel then $\omega_1 = \omega_2$
\n(ii)

(12) Perpendicular distance of a point z_0 from the line $\alpha z + \alpha z + r = 0$ is $\frac{|\alpha z_0 + \alpha z|}{2|\alpha|}$ $|\alpha z_0 + \alpha z_0 + \mathbf{r}|$ α $\alpha z_0 + \alpha z_0 +$

(13) (i) Complex slope of a line
$$
\overline{\alpha z} + \alpha \overline{z} + \mathbf{r} = 0
$$
 is $\omega = -\frac{\alpha}{\overline{\alpha}}$

(ii) Complex slope of a line joining by the points $z_1 \& z_2$ is $1 - Z_2$ $1 - 2$ $z_1 - z$ $\mathbf{z}_1 - \mathbf{z}$ - $\omega = \frac{z_1 - z_2}{z_1 - z_1}$

(iii) Complex slope of a line makine θ angle with real axis = $e^{2i\theta}$

(14) $\qquad \omega_1 \& \omega_2$ are the complex slopes of two lines.

- (i) If lines are parallel then $\omega_1 = \omega_2$
- (ii) If lines are perpendicular then $\omega_1 + \omega_2 = 0$

(15) If
$$
|z - z_1| + |z - z_2| = K > |z_1 - z_2|
$$
 then locus of z is an ellipse whose foci are $z_1 \& z_2$

(16) If $|z - z_0| = \left| \frac{\alpha z + \alpha z + r}{2 |\alpha|} \right|$ α $\frac{\alpha z + \alpha z + r}{2 |\alpha|}$ then locus of z is parabola whose focus is z_0 and directrix is the line $\frac{-}{\alpha z_0} + \frac{-}{\alpha z_0} + r = 0$

Einstein Classes, *Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi – 110 018, Ph. : 9312629035, 8527112111*

(17) If
$$
\left| \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{z} - \mathbf{z}_2} \right| = \mathbf{k}
$$
 where $\mathbf{k} \neq 0$ or 1 then locus of z is circle.

(18) If
$$
||z - z_1| - |z - z_2|| = K < |z_1 - z_2|
$$
 then locus of z is a hyperbola, whose focii are $z_1 \& z_2$.

C12 (a) Reflection points for a straight line :

Two given points $P \& Q$ are the reflection points for a given straight line if the given line is the right bisector of the segment PQ. Note that the two points denoted by the complex numbers

 $z_1 \& z_2$ will be the reflection points for the straight line $\alpha z + \alpha z + r = 0$ if and only if;

 $\alpha z_1 + \alpha z_2 + r = 0$, where r is real and α is non zero complex constant.

(b) Inverse points w.r.t. a circle :

Two points P & Q are said to be inverse w.r.t. a circle with centre 'O' and radius ρ , if :

(i) the point O, P, Q are collinear and P, Q are on the same side of O.

(ii) OP . OQ = ρ^2 .

The two points $z_1 \& z_2$ will be the inverse points w.r.t. the circle $zz + \alpha z + \alpha z + r = 0$ if and only if $\overline{z_1 z_2 + \alpha z_1 + \alpha z_2} + \overline{z_1}$

Practice Problems :

- **1. Find the radius and centre of the circle** $z\overline{z} + (1-i)z + (1+i)\overline{z} 7 = 0$
- **2. Determine the value of k for which equation** $z\overline{z} + (-3+4i)\overline{z} (3+4i)z + k = 0$ **represent a circle.**
- **3. Show that the points representing the complex numbers** $(3 + 2i)$ **,** $(2 i)$ **and** $-7i$ **are collinear.**
- **4. Find the perpendicular bisector of** $3 + 4i$ **and** $-5 + 6i$ **.**
- **5. If z¹ , z2 , z3 are the affixes of the vertices of a triangle having its circumcentres at the origin. If z is the affix of its orthocentre then prove that** $z_1 + z_2 + z_3 - z = 0$
- **6. Find the locus of a complex number z in the Argand plane, satisfying** $|z (1 + i)| = 5$ **.**

Example 18. (i) the primal O, P, Q are collinear and P, Q are on the same side of O.

(ii) OP: $O(Q - p^2$,

The two points x_1 & x_2 iii be the inverse points w.r.t. the circle $\bar{x} \bar{x} + \bar{\alpha} \bar{x} + \alpha \bar{x} + \bar{x} = 0$ if a **Example 12** is a contribution of a triangle having its circumcentr
 Frove that $z_1 + z_2 + z_3 - z = 0$
 Example 2 in the Argand plane, satisfying $|z - ($
 Example 2 is a circumber z satisfying $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$ **7.** Show that the locus of a complex number z satisfying $\arg\left(\frac{2}{z+1}\right) = \frac{\pi}{2}$ $\arg\left(\frac{z-1}{z}\right) = \frac{\pi}{2}$ Į $\left(\frac{z-1}{z}\right)$ ļ ſ $\ddot{}$ $\left(\frac{1}{\epsilon}\right) = \frac{\pi}{2}$ is a circle. Find the equation of

the circle in cartesian coordinates.

- **8.** Locate the points in the Argand plane representing the complex numbers $z = x + iy$ for which (i) $|z + 1| + |z - 1| < 3$
	- **(ii)** $arg(z-4-i) = \frac{\pi}{6}$
	- (iii) $|z-1| + |z+1| = 4$
	- (iv) $|z 1| + |z + 1| = 4$
(iv) $arg (z + i) arg (z i) = \pi/2$

9. Find the locus of the complex number z in the Argand plane if $\left|\frac{1}{z-i}\right| = 1$ $\left|\frac{1-iz}{z-i}\right|$ = $\left|\frac{-iz}{i}\right|=1$.

10. If $z = x + iy$ and $\omega = \frac{z - i}{z - i}$ **1 zi** $\overline{}$ $\omega = \frac{1 - zi}{z - i}$, $|\omega| = 1$, then find the locus of z.

> **[Answers :** (1) (-1, -1), 3 (2) **k** \leq 25 (4)(8+2i)z+(8-2i)z+36=0 (6) Circle (7) $x^2 + y^2 = 1$ (8) (i) Interior of the ellipse having foci at $(1, 0)$ and $(-1, 0)$ and major axis of length 3 units (ii) A straight line passing through $(4, 1)$ and making an angle of $\pi/6$ with x-axis (iii) Ellipse with foci at **1 + 0.i and –1 + 0.i and centre at origin (iv) Locus of point z is a circle with diameter AB and centre at origin with radius 1 (10) z lies on the real axis]**

C13 Ptolemy's Theorem :

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sum of the products of lengths of the two pairs of its opposite sides.

i.e.
$$
|z_1 - z_3| |z_2 - z_4| = |z_1 - z_2| |z_3 - z_4| + |z_1 - z_4| |z_2 - z_3|.
$$