SEQUENCE AND SERIES

Syllabus :

Arithmetic and Geometric progression, insertion of arithmetic, geometric means between two given www.einsteinclasses.com numbers, Relation between A.M. and G.M. Sum upto n terms of special series : S_n, S_{n^2}, S_{n^3} .

		2 mer chees			Difference		
terms is		Differences	terms is	terms	Difference		
Selection	Choosen terms	Common	No. of	Choosen	Common		
Colo-4	If the sum of n term is in	the form $An^2 + B$	Bn + C, then con	nmon difference of A	A.P. is 2A.		
7.	If sum of n terms of any s	sequence is quad	atic in n, then s	equence is A.P.			
	If n^{th} term of form An + I	B, then common	difference of A.I	P. is A.			
6.	If n th term of any sequence	e is a linear expr	ession in n, ther	sequence is an A.P.			
	i.e. $a_k + a_{n-(k-1)} = a_1$	+ a _n (first term +	last term)				
	Then sum of the terms equidistant from the beginning and end is constant						
5.	If a_1, a_2, a_3, \dots	.an are in A.P.					
	Then $a_1b_1, a_2b_2, a_3b_3, \dots$	are not i	in A.P.				
4.	If a_1, a_2, a_3, \dots	are in A.P. &	$\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are in A	A.P.			
	Then $a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_2$	b ₃ ,are	in A.P.	7			
3.	If a ₁ , a ₂ , a ₃ ,	are in A.P. & b ₁ , b	b_2 , b_3 are in A.P.	6			
	$\& \frac{\mathbf{a}_1}{\mathbf{k}}, \frac{\mathbf{a}_2}{\mathbf{k}}, \frac{\mathbf{a}_3}{\mathbf{k}} \dots$	are in A.P.		S			
	Then ka_1, ka_2, ka_3, \dots	are in A.P.		G			
2.	If a_1, a_2, a_3, \dots are in A.P.						
	Then $a_1 \pm k$, $a_2 \pm k$, $a_3 \pm k$, are in A.P.						
1.	If a ₁ , a ₂ , a ₂ ,are in	n A.P.					
Properti	es of an A.P. :						
If <i>l</i> is last	term (or nth term), then	$S_n = \frac{n}{2} \left[a + a \right]$	$\left[\frac{1+(n-1)d}{l}\right] =$	$>$ S _n = $\frac{n}{2}[a+l]$			
Sum of n	a terms of an A.P. :	$S_n = \frac{n}{2} [2a +$	(n – 1)d]				
nth term	of A.P. : $T_n = a + (n - 1)$	d					

Arithmetic Sequence or Arithmetic Progression C1

5.

An Arithmetic sequence is a sequence in which the difference between any term and its just preceding term

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi - 110 018, Ph. : 9312629035, 8527112111

6

d

a - 2d, a - d, a, a + d

a + 2d

a + d, a + 3d

a - 5d, a - 3d,

a-d, a+d,a + 3d, a + 5d 2d

Practice Problems :

- 1. The least value of 'a' for which $5^{1+x} + 5^{1-x}$, $\frac{a}{2}$, $25^x + 25^{-x}$ are three consecutive terms of an A.P. is
 - (a) 5 (b) 10 (c) 12 (d) none of these
- 2. The first, second and middle terms of an A.P. are a, b, c respectively. Their sum is

(a)
$$\frac{2(c-a)}{b-a}$$
 (b) $\frac{2c(c-a)}{b-a} + c$ (c) $\frac{2c(b-a)}{c-a}$ (d) $\frac{2b(c-a)}{b-a}$

3. The sum of first p terms of an A.P. is q and the sum of the first q terms is p. The sum of the first (p+q) terms is

(a)
$$p+q$$
 (b) 0 (c) $-(p+q)$ (d) $-2(p+q)$

4. If the sum of first p terms, first q terms and first r terms of an A.P. be a, b and c respectively, then

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) \text{ is equal to}$$
(a) 0 (b) 2 (c) pqr (d) $\frac{8abc}{pqr}$
[Answers : (1) c (2) b (3) c (4) a]

C2 Geometric Sequence or Geometric Progression :

A Geometric progression (G.P.) is a sequence in which the ratio of any term and its just preceding term is constant throughout.

This constant is called the common ratio.

Example : (i) $8, 1, 8^{-1}, 8^{-2}, \dots$

(ii) 2, 4, 8, 16,.....

nth Term of G.P.

If a is first term and r is the common ratio of geometric progression then $n^{th}\,\text{term}$

Sum of First n Terms : $S_n = \frac{a(r^n - 1)}{r - 1}, r \neq 1$

If
$$r < 1$$
 then S_{∞} (sum of infinite terms) = $\frac{a}{1-r} (|r| < 1)$

Properties of a G.P. :

1. If a_1, a_2, a_3, \dots are in G.P.

Then a_1k, a_2k, a_3k, \dots are in G.P. & $\frac{a_1}{k}, \frac{a_2}{k}, \frac{a_3}{k}$ are in G.P.

2. If a_1, a_2, a_3, \dots are in GP.

Then $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}$are in G.P.

3. If $a_1, a_2, a_3, \dots, b_1, b_2, b_3, \dots, are in G.P.$

Then $a_1b_1, a_2b_2, a_3b_3, \dots$ are in G.P., & $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}$ are in G.P.

- 4. If $a_1, a_2, a_3, \dots, \& b_1, b_2, b_3, \dots$ are in G.P having different common ratio then $a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3, \dots$ are not in G.P.
- If a₁, a₂, a₃,..... are in G.P.
 Then log a₁, log a₂, log a₃..... are in A.P. & Viceversa
- 6. If $a_1, a_2, a_3, \dots, a_n$ are in G.P.
- Then $a_1a_n = a_2a_{n-1} = a_3 \cdot a_{n-2} = \dots$ 7. If a_1, a_2, a_3, \dots are in G.P. Then $a_2^2 = a_1a_3 : a_3^2 = a_2a_4 ; a_4^2 = a_3a_5; \dots$ Selection of terms in an G.P.

No. of terms is odd	Choosen terms	Common ratio	No. of terms is even	ChoosenCommontermsratio
3	$\frac{a}{r}$, a, ar	r	4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$
5.	$\frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2$	r	6	$\frac{a}{r^5}, \frac{a}{r^3}, \frac{a}{r}, a, ar^3, ar^5$ r^2

Practice Problems :

1. If a, b, c are in G.P. and $\log_c a$, $\log_b c$, $\log_a b$ are in A.P., then the common difference on the A.P. is (a) 3 (b) 3/2 (c) 1/2 (d) 2/3 $\log_2\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}\log_2\right)$

2.	The va	alue of $(0.16)^{10525}$	$(3^{+}3^{2}^{+}3^{3})$	is				
	(a)	2	(b)	3	(c)	4	(d)	none of these
3.	If x, y,	z are in GP and a	$\mathbf{x} = \mathbf{b}^{\mathbf{y}} = \mathbf{b}^{\mathbf{y}}$	c ^z , then		•		
	(a)	$\log_{b}a = \log_{a}c$	(b)	$\log_{c} b = \log_{a} c$	(c)	$\log_{b} a = \log_{c} b$	(d)	none of these
4.	If a, b	, c, d, e are in GP a	and a ^x =	$\mathbf{b}^{\mathrm{y}} = \mathbf{c}^{\mathrm{z}} = \mathbf{d}^{\mathrm{u}} = \mathbf{e}^{\mathrm{v}}, \mathbf{t}$	hen x, y,	z, u, v are in		
	(a)	AP	(b)	GP	(c)	HP	(d)	none of these
	[Answ	vers : (1) b (2) c (3)	c (4) c]	5				

C3 Arithmetic - Geometric Series :

A series is said to be an arithmetico-geometric series if its each term is formed by multiplying the corresponding term of an A.P. and a G.P.

e.g. $2x + 4x^2 + 6x^3 + 8x^4$

Here 2, 4, 6, 8,.....are in A.P. and x, x², x³, x⁴....are in G.P.

nth Term of an Arithmetico-Geometric Series :

nth term of arithmetico-geometric series can be obtained by multiplying the nth term of a A.P & nth term of a G.P.

e.g. The nth terms of the series $2x + 4x^2 + 6x^3 + 8x^4 + \dots$ is {2 + (n - 1)2}(x . x^{n-1}) = 2n . x^n

Sum of n terms of an arithmetico- geometric series :

Let $S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n - 1)d]r^{n-1}$ (i) Multiplying both sides of (i) by common ratio of (G.P.) r and write as follows $rS_n = ar + (a + d)r^2 + \dots + [a + (n - 1)d]r^n$ (ii)

100(1-i)

From (i) - (ii) $S_n(1-r) = a + [dr + dr^2 + \dots + dr^{n-1}] - [a + (n-1)d]r^n$ $S_n(1-r) = a + \frac{dr(1-r^{n-1})}{1-r} - [a+(n-1)d]r^n$ \Rightarrow $S_{n} = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^{2}} - \frac{[a+(n-1)d]r^{n}}{(1-r)}$ \Rightarrow Sum of Infinite Terms : $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$ **Practice Problems :** The sum if i - 2 - 3i + 4 ... upto 100 terms, where $i = \sqrt{-1}$ is **(b)** 25i 50(1-i)(c) 25(1+i)**(d) (a)** [Answers : (1) a]

C4 Harmonic Progression :

1.

A sequence is said to be Harmonic Progression (H.P.) if the reciprocals of its terms are in Arithmetic Progression (A.P.)

If
$$a_1, a_2, a_3, \dots, a_n$$
 are in H.P. then $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}$ are in A.P.

1. nth term of this H.P. from start

e is said to be Harmonic Progression (H.P.) if the reciprocals of its te
n (A.P.)
.....an are in H.P. then
$$\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}$$
 are in A.P.
nth term of this H.P. from start

$$T_n = \frac{1}{\frac{1}{a_1} + (n-1)\left(\frac{1}{a_2} - \frac{1}{a_1}\right)} = \frac{a_1a_2}{a_2 + (n-1)(a_1 - a_2)}$$

nth term of this H.P. from end 2.

$$T_{n}' = \frac{1}{\frac{1}{a_{n}} - (n-1)\left(\frac{1}{a_{2}} - \frac{1}{a_{1}}\right)} = \frac{a_{1}a_{2}a_{n}}{a_{1}a_{2} - a_{n}(n-1)(a_{1} - a_{2})}$$

3.
$$\frac{1}{\text{nth term of H.P. from start}} + \frac{1}{\text{nth term of H.P. from last}}$$

i.e.,
$$\frac{1}{T_n} + \frac{1}{T'_n} = \frac{1}{a} + \frac{1}{a_n} = \frac{1}{\text{first term}} + \frac{1}{\text{last term}}$$

Practice Problems :

1. If
$$\mathbf{b} - \mathbf{c}$$
, $2\mathbf{b} - \mathbf{x}$ and $\mathbf{b} - \mathbf{a}$ are in H.P., then $\mathbf{a} - \left(\frac{\mathbf{x}}{2}\right)$, $\mathbf{b} - \left(\frac{\mathbf{x}}{2}\right)$ and $\mathbf{c} - \left(\frac{\mathbf{x}}{2}\right)$ are in :
(a) A.P. (b) G.P. (c) H.P. (d) none of these

2. If
$$\frac{a+b}{1-ab}$$
, b, $\frac{b+c}{1-bc}$ are in A.P., then a, $\frac{1}{b}$, c are in
(a) A.P. (b) G.P. (c) H.P. (d) none of these
[Answers : (1) b (2) c]

C5A

Arithmetic Mean, Geometric Mean and Harmonic Mean

	Arithmatic Mean	Geometric Mean	Harmonic Mean				
Definition	If three terms in A.P. then the middle term is called the Arithmetic mean (A.M.) between the other two. e.g. If a, b, c are in A.P. then b is arithmetic mean of a and c	If three terms are in GP. then middle term is called the Geometric mean (G.M.) between the other two. e.g. If a, b, c are in G.P., then b is geometric mean of a and c	If three terms are in H.P. then middle term is called the Har- monic mean (H.M.) between the other two. e.g. If a, b, c are in H.P., then b is harmonic mean of a and c				
Single mean of n positive numbers a ₁ , a ₂ a _n	$A = \frac{a_1 + a_2 + \dots + a_n}{n}$ (A = Arithmetic mean)	$G = (a_1.a_2.a_3a_n)^{1/n}$ (G = Geometric mean)	$\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_i}$ (H = Harmonic mean)				
	Special Case : If a and b are two given numbers then						
	$A = \frac{a+b}{2}$	$G = (ab)^{1/2}$	$H = \frac{2ab}{a+b}$				

C5B Properties of A.M., G.M. and H.M. :

- If A, G and H be arithmetic and geometric means of two numbers a and b. 1. Then, $G^2 = AH$
- 2. The equation having a and b as its root is written in the form $x^2 - 2Ax + G^2 = 0$.
- Application to the questions of Inequalities : In general A.M. \geq G.M. \geq H.M. 3. **Practice Problems :**
- The harmonic mean of two numbers is 4, their A.M. A, and G.M. G satisfy the relation $2A + G^2 = 27$. 1. The two numbers are

(a)

(b) 5, 4 (c) 5, -2.5 (**d**)

-3, 1

If A_1, A_2 be two A.M.'s and G_1, G_2 be two G.M.'s between a and b, then $\frac{A_1 + A_2}{G_1G_2}$ is equal to 2.

(a)
$$\frac{a+b}{2ab}$$
 (b) $\frac{2ab}{a+b}$ (c) $\frac{a+b}{ab}$ (d) $\frac{a+b}{\sqrt{ab}}$

[Answers : (1) a (2) c]

6, 3

- C6 Miscellaneous approach of summation :
- 1. \sum Method :

Working Rule for Summation of Series :

- Find the nth term of the series.
- Simplify the nth terms.

• Now evaluate
$$S_n = \sum_{n=1}^n t_n$$
, with the help of $\sum n, \sum n^2, \sum n^3$.

$$\sum_{n=1}^{n} n = \frac{n(n+1)}{2}, \qquad \left(\sum_{n=1}^{n} n^2\right) = \frac{n(n+1)(2n+1)}{6} \qquad \text{and} \qquad \sum_{n=1}^{n} n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

2. Method of differences :

If the difference of the successive terms of a sequence is in A.P. or G.P., we find the nth term of this sequence by method of difference, which is given as follows

$$\begin{split} S_n &= t_1 + t_2 + t_3 + \dots + t_n \\ S_n &= t_1 + t_2 + \dots + t_{n-1} + t_n \\ From \ (1) - (2); \ 0 &= t_1 + (t_2 - t_1) + (t_3 - t_2) + \dots + (t_n - t_{n-1}) - t_n \\ \Rightarrow t_n &= t_1 + (t_2 - t_1) + (t_3 - t_2) + \dots + (t_n - t_{n-1}) \end{split}$$

So,
$$S_n = \sum_{n=1}^n t_n$$

Practice Problems :

1. The cubes of the natural numbers are grouped as 1^3 , $(2^3, 3^3)$, $(4^3, 5^3, 6^3)$,... then the sum of the numbers in the nth group is

(b)

(**d**)

(a)
$$\frac{1}{8}n^3(n^2+1)(n^2+3)$$

$$\frac{1}{16}n^3(n^2+16)(n^2+12)$$

...(1) ...(2)

25

(c)
$$\frac{n^3}{12}(n^2+2)(n^2)$$

none of the above

2. The sum of n terms of the series
$$\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$$
 is

(a)
$$\frac{6n}{n+1}$$
 (b) $\frac{9n}{n+1}$ (c) $\frac{12n}{n+1}$ (d) $\frac{3n}{n+1}$

[Answers : (1) a (2) a]