

- C1 In this chapter we will discuss the calculations based on chemical equations. It has been classified into two parts:
 - 1. Mole Concept
 - 2. Equivalent Concept

C2 MOLE CONCEPT:

In mole concept we deal with different types of relations like weight-weight, weight-volume, or volume-volume relationship between reactants or products of the reaction.

Mole concept is based on balanced chemical chemical reaction. Some basic definitions used in mole concept are as follows:

Limiting Reagent : A reagent which is consumed completely during the chemical reaction.

Number of moles of a substance(n) = $\frac{\text{weight of substance}}{\text{atomic or molecular weight}}$

Also, Number of moles of a substance(n) = $\frac{Given \ number \ of \ molecules}{Avogadro \ number}$

In gas phase reaction number of moles of a gas (n) = $\frac{PV}{RT}$

At STP/NTP one mole of any gas contains 22.4 L i.e. at 273 K and 1 atm pressure.

In aq. solution n = MV [M - molarity, V - volume of solution]

Practice Problems:

- 1. Chlorine can be produced by reacting H_2SO_4 acid with a mixture of MnO_2 and NaCl. The reactions follows the equation: $2NaCl + MnO_2 + 3H_2SO_4 \rightarrow 2NaHSO_4 + MnSO_4 + Cl_2 + H_2O$ what volume of chlorine at STP can be produced from 100 g of NaCl? (At. wt. Na = 23, Cl = 35.5)
 - (a) 19.15 lt
- b) 30 lt
- (c) 29 lt
- (d) 5 lt
- 2. A solution contains 5 g of KOH was poured into a solution containing 6.8 g of AlCl₃, find the mass of precipitate formed [At. wt.: H-1, Al-27, Cl-35.5, K-39]
 - (a) 2.3 g
- (b) 23 g
- e) 32 g
- (d) 0.32 g

[Answers: (1) a (2) a]

C3 <u>DIFFERENT WAYS OF EXPRESSING THE CONCENTRATION TERMS</u>:

Important Definitions:

$$mass percent = \frac{mass of solute}{mass of solution} \times 100$$

 $Molarity(M) = \frac{No. of moles of solute}{Vol. of solution in L}, unit of molarity are mol/lit., M or molar.$

 $Normality(N) = \frac{No. \ of \ gram equivalents \ of \ solute}{Vol. \ of \ solution \ in \ L} \ , \ unit \ of \ normality \ are \ g-eq./lit., \ N \ or \ normal.$

 $Molality(m) = \frac{No. of \ moles \ of \ solute}{wt. of \ solvent}, \ unit \ of \ molality \ are \ mol/kg, \ m \ or \ molal.$

$$Mole fraction(x_A) = \frac{n_A}{n_A + n_B}$$

$$ppm = \frac{mass \ of \ solute}{mass \ of \ solution} \times 10^6$$

No. of gram equivalents of solute(
$$n_{eq}$$
) = $\frac{\text{Weight of solute}}{\text{Equivalent weight}}$

$$Equivalent\ weight = \frac{Molecular\ weight\ (or)\ Atomic\ weight\ (or)\ Ionic\ weight}{n\ factor}$$

The relation between different concentration terms:

1.
$$n_{eq} = n_{mol} \times n$$
-factor

2.
$$n_{eq} = Normality \times Volume (L)$$

3. Number of
$$moles(n_{mol}) = Molarity \times Volume (L)$$

. Normality = Molarity
$$\times$$
 n-factor

5.
$$M = \frac{10xd}{M'}$$

$$6. \qquad \mathbf{m} = \frac{\mathbf{M} \times 1000}{1000\mathbf{d} - \mathbf{MM'}}$$

7.
$$m = \frac{x_B \times 1000}{(1 - x_B)M_A}$$

 $(d \to density of solution in g/ml, \mathbf{M'} \to molar mass of solute, x_B and x_A are mole fraction of solute and solvent respectively, <math>M_A \to molar mass of solvent)$

Calculation of 'n' Factor for Different Compounds:

1. Acids:
$$n = basicity$$

$$H_3PO_4$$
 $n=3$

$$H_3PO_3$$
 $n=2$

$$H_3PO_2$$
 $n=1$

$$H_3BO_3$$
 $n=1$

2. Bases:
$$n = acidity of base$$

e.g. Ammonia and all amines are monoacidic bases,

$$NaOH(n = 1), Na_{2}CO_{2}(aq) n = 2, NaHCO_{2}(n = 1)$$

3. Salt : (Which does not undergo redox reactions)

n factor = Total cationic or anionic charge, e.g. Na₃PO₄ n = 3, Ba₃(PO₄), n = 6

4. Oxidizing Agents or Reducing Agents: 'n' factor = change in oxidation number Or number of electron lost or gained from one mole of the compound.

C4 EQUIVALENT CONCEPT

It is based on law of equivalence which is explained as follows:

Law of chemical equivalents: In a chemical reaction the equivalents of all the species (reactants or products) are equal to each other provided none of these compounds is in excess.

 $N_1V_1 = N_2V_2$ (when normalities and volumes are given).

If the number of equivalence of both the reactants are different then reactant with the lesser number of equivalence will be the **limiting reagent**.

Application of equivalent concept: It is used in acid base titration, back titration and double titration, similarly in redox titration. Equivalent concepts can be used on all reaction whether they are balanced or not balanced but mole concept is used in solving the problems when the reactions are balanced.

Basic principles of tirations:

In voltmetric analysis, a given amount (weight or volume) of an unknown substance is allowed to react with a known volume of a standard solution slowly. A chemical reaction takes place between the solute of an unknown substance and the solute of the standard solution. The completion of the reaction is indicated by the end point of the reaction, which is observed by the colour change either due to the indicator or due to the solute itself. Whether the reactions during the analysis are either between an acid and or base or between O.A. and R.A., the law of equivalence is used at end point.

Following are the different important points regarding this process:

- (i) In case of acid base titration at the equivalence point
 - (n_{eq}) acid = (n_{eq}) base
- (ii) In case of redox titration
 - (n_{eq}) oxidant = (n_{eq}) reductant

- (iii) If a given volume of solution is diluted then number of moles or number of equivalence of solute remains same but molarity or normality of the solution decreases.
- (iv) If a mixture contains more than one acids and is allowed to react completely with the base then at the equivalence point, (n_{eq}) acid, + (neq) acid, + ... = (n_{eq}) base
- (v) Similarly if a mixture contains more than one oxidising agents then at equivalence point, $(n_{eq}) O.A_1 + (n_{eq}) O.A_2 + ... = (n_{eq})$ reducing agent.
- (vi) If it is a difficute to solve the problem through equivalence concept then use the mole concept.

Back titration:

This is a method in which a substance is taken in excess and some part of its has to react with another substance and the remaining part has to be titrated against standard reagent.

Double titration :

This is a titration of specific compound using different indicators. Let us consider a solid mixture of NaOH, Na₂CO₃ and inert impurities.

When the solution containing NaOH and Na_2CO_3 is titrated using phenolphalein indicator following reaction takes place at the phenolphthalein end point –

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O
Na₂CO₃ + HCl \rightarrow NaHCO₃ + H₂O

Here, eq. of NaOH +
$$\frac{1}{2}$$
 eq. of Na₂CO₃ = eq. of HCl

When methyl orange is used, Na₂CO₃ is converted into NaCl + CO₂ + H₂O

Hence, eq. of NaOH + eq. of
$$Na_2CO_3 = eq.$$
 of HCl

TITRATION OF MIXTURE OF BASES WITH TWO INDICATORS

Every indicator has a working range

Indicator	pH range	Behaving as
Phenolphthalein	8 — 10	weak organic acid
Methyl orange	3 — 4.4	weak organic base

Thus methyl orange with lower pH range can indicate complete neutralisation of all types of bases. Extent of reaction of different bases with acid (HCl) using these two indicators summarised below

	Phenolphthalein	Methyl Orange
NaOH	100% reaction is indicated	100 % reaction is indicated
	$NaOH + HCl \rightarrow NaCl + H_2O$	$NaOH + HCl \rightarrow NaCl + H_2O$
Na ₂ CO ₃	50% reaction upto NaHCO ₃	100% reaction is indicated
	stage is indicated $Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$	$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$
NaHCO ₃	No reaction is indicated	$\label{eq:NaHCO3} \begin{split} \text{NaHCO}_3 + \text{HCl} &\rightarrow \text{NaCl} + \text{H}_2\text{O} + \\ \text{CO}_2 \end{split}$

100% reaction is indicated

	Species	Changed to	Reactions	Electron exchanged or change in O.N.	Eq. wt.
1.	MnO ₄ ⁻ (O.A.)	Mn²+ in acidic medium	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	5	$E = \frac{M}{5}$
2.	MnO ₄ ⁻ (O.A.)	MnO ₂ in basic medium	$MnO_4^- + 3e^- + 2H_2O \rightarrow MnO_2 + 4OH^-$	3	$E = \frac{M}{3}$
3.	MnO ₄ ⁻ (O.A.)	$\mathrm{MnO_4^{2-}}$ in neutral medium	$MnO_4^- + e^- + 2H_2O \rightarrow MnO_2^{2-}$	1	$E = \frac{M}{1}$
4.	Cr ₂ O ₇ ²⁻ (O.A.)	Cr³+ in acidic medium	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	6	$E = \frac{M}{6}$
5.	MnO ₂ (O.A.)	Mn²+ in acidic medium	$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	2	$E = \frac{M}{2}$
6.	Cl ₂ (O.A.) (in bleaching powder)	Cl [—]	$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-$	2	$E = \frac{M}{2}$
7.	CuSO ₄ (O.A.) (in iodometric titration)	Cu ⁺	$Cu^{2+} + e^{-} \rightarrow Cu^{+}$	10	$E = \frac{M}{1}$
8.	$S_2O_3^{2-}$ (R.A.)	$S_4O_6^{\ 2-}$	$2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$	2 (for two molecules)	$E = \frac{M}{5} = M$
9.	H ₂ O ₂ (O.A.)	H ₂ O	$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	2	$E = \frac{M}{2}$
10.	H ₂ O ₂ (R.A.)	$\mathbf{O_2}$	$H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$ (O.N. of oxygen in H_2O_2 is (-1)	2	$E = \frac{M}{2}$
11.	Fe ²⁺ (R.A.)	Fe ³⁺	$\begin{array}{c} \text{per atom)} \\ \text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^{-} \end{array}$	1	$E = \frac{M}{1}$

	Estimation of	Reaction	Relation between O.A. and R.A.
1.	I ₂	$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6^{2-}$ $I_2 + 2S_2O_3^{2-} \rightarrow 2I^{-} + S_4O_6^{2-}$	$I_2 \equiv 2I^- \equiv 2Na_2S_2O_3$
		2 72 3 4 6	Eq. wt. $(Na_2S_2O_3) = E = \frac{M}{1}$
2.	CuSO ₄	$2\text{CuSO}_4 + 4\text{KI} \rightarrow \text{Cu}_2\text{I}_2 + 2\text{K}_2\text{SO}_4 + \text{I}_2$ or $2\text{Cu}^{2+} + 4\text{I}^- \rightarrow \text{Cu}_2\text{I}_1 + \text{I}_1$	$2CuSO_4 \equiv I_2 \equiv 2Na_2S_2O_3$
		white ppt.	Eq. wt. of $CuSO_4 = \frac{M}{1}$
3.	CaOCl ₂	$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$	$CaOCl_2 \equiv Cl_2 \equiv I_2 \equiv 2I^- \equiv 2Na_2S_2O_3$
		$Cl_{2} + 2KI \rightarrow 2KCl + I_{2}$ $Cl_{2} + 2I^{-} \rightarrow 2Cl^{-} + I_{2}$	Eq. wt. of $CaOCl_2 = \frac{M}{2}$
4.	MnO ₂	$MnO_2 + 4HCl (conc.) \xrightarrow{\Delta} MnCl_2 +$	$MnO_2 \equiv Cl_2 \equiv I_2 \equiv 2I^- \equiv 2Na_2S_2O_3$
		$Cl_{2} + 2H_{2}O$ $Cl_{2} + 2KI \rightarrow 2KCl + I_{2}$ or $MnO_{2} + 4H^{+} + 2Cl^{-} \rightarrow Mn^{2+} + 2H_{2}O$	Eq. wt. of $MnO_2 = \frac{M}{2}$
		$\begin{array}{c} + \operatorname{Cl}_2 \\ \operatorname{Cl}_2 + 2\operatorname{I}^- \to \operatorname{I}_2 + 2\operatorname{Cl}^- \end{array}$	
5.	IO ₃ ⁻	$IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$	$IO_3^- \equiv 3I_2 \equiv 6I \equiv 6Na_2S_2O_3$
			Eq. wt. $IO_3^- = \frac{M}{6}$

6.	$\mathbf{H_{2}O_{2}}$	$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$	$\mathbf{H}_{2}\mathbf{O}_{2} \equiv \mathbf{I}_{2} \equiv 2\mathbf{I}^{-} \equiv 2\mathbf{N}\mathbf{a}_{2}\mathbf{S}_{2}\mathbf{O}_{3}$
			Eq. wt. $\mathbf{H}_2 \mathbf{O}_2 = \frac{\mathbf{M}}{2}$
7.	Cl_2	$\text{Cl}_2 + 2\text{I}^- \rightarrow 2\text{Cl}^- + \text{I}_2$	$Cl_2 \equiv I_2 \equiv 2I^- \equiv 2Na_2S_2O_3$
			Eq. wt. of $Cl_2 = \frac{M}{2}$
8.	$\mathbf{O_3}$	$O_3 + 6I^- + 6H^+ \rightarrow 3I_2 + 3H_2O + O_2$	$O_3 \equiv 3I_2$
			Eq. wt. of $O_3 = \frac{M}{2}$
9.	ClO-	$\mathbf{ClO^-} + \mathbf{2I^-} + \mathbf{2H^+} \rightarrow \mathbf{H_2O} + \mathbf{Cl^-} + \mathbf{I_2}$	$ClO^{-} \equiv I_2 \equiv 2I \equiv 2Na_2S_2O_3$
			Eq. wt. of ClO ⁻ = $\frac{M}{2}$
10.	Cr ₂ O ₇ ² —	$Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 3I_2 + 2Cr^{3+} +$	$\operatorname{Cr_2O_7}^2 = 3I_2 = 6I^-$
		$7\mathrm{H_2O}$	Eq. wt. of $Cr_2O_7^2 = \frac{M}{6}$

								6		
	<u>Practi</u>	ce Problems :				6				
1.	[Na+] i	n a solution prepa	ared by mi	ixing 30.00 mL o	f 0.12 M N	aCl with 70 mL	of 0.15 M N	Na,SO ₄ is		
	(a)	0.135 M	(b)	0.141 M	(c)	0.210 M	(d)	0.246 M		
2.	The eq	The equivalent mass of MnSO ₄ is half of its molar mass when it is converted to								
	(a)	Mn_2O_3	(b)	MnO_2	(c)	MnO ₄	(d)	MnO ₄ 2-		
3.	The ar	nion nitrate can b be	e converte	d into ammoniu	m ion. The	equivalent mass	s of NO ₃ - io	n in this reacti	on	
	(a)	6.20 g	(b)	7.75 g	(c)	10.5 g	(d)	21.0 g		
4.		BrO ₃ ⁻ ion reacts action is	with Br ⁻ i	on in acid solutio	on Br ₂ is lib	erated. The equ	iivalent we	ight of KBrO ₃	in	
	(a)	M/8	(b)	M/3	(c)	M /5	(d)	M/6		
5.		mber of moles of solution is	KMnO ₄ tl	nat will be neede	d to react co	ompletely with o	ne mole of i	ferrous oxalate	in	
	(a)	3/5	(b)	2/5	(c)	4/5	(d)	1		
6.	litre.	N-HCl, 20 ml of	_	•		re mixed togeth	er and the v	volume made to) 1	
	(i)		ty of the re	esulting solution	is					
	(a)	N/5	(b)	N/10	(c)	N/20	(d)	N/40		
	(d)									
	(ii)	The wt. of pu	re NaOH	required to neut	ralize the a	bove solution is				
	(a)	10 g	(b)	2 g	(c)	1 g	(d)	2.5 g		
7.		f a sample of Na ₂ C on required 19.8 r						0 ml, 20 ml of tl	is	

(c)

2

(d)

5

(b)

3

(a)

7

	(a)	$\frac{100}{3}$ mL	(b)	$\frac{500}{3}$ mL	(c)	$\frac{300}{3}$ mL	(d)	100 mL		
9.		L of a mixture of N mL mixture is	aOH and l	Na ₂ SO ₄ is neutral	lised by 100	mL of 0.5 M H ₂ S	SO ₄ . Hence	amount of NaOH		
	(a)	0.2 g	(b)	0.4 g	(c)	0.6 g	(d)	1.0 g		
10.		of a mixture of FeS ${ m action}$ of FeSO $_{ m 4}$ ir			100 mL of 2	2 M KMnO ₄ solut	tion is acid	ic medium. Hence		
	(a)	$\frac{1}{3}$	(b)	$\frac{2}{3}$	(c)	$\frac{2}{5}$	(d)	$\frac{3}{5}$		
11.	5.3 g o equiva	$f M_2 CO_3$ is dissoluted weight of M i	ved in 150 s	mL of 1 N HCl.	Unused ac	cid required 100	mL of 0.5	N NaOH. Hence		
	(a)	23	(b)	12	(c)	24	(d)	13		
	[Answ	ers: (1) d (2) b (3)) b (4) c (5)) a (6) (i) d (ii) c	(7) c (8) b (9	9) b (10) a (11) a]				
C5	VOLU	ME STRENGT	H OF H,C	<u>)</u> ,						
	x volume of H_2O_2 means x litre of O_2 is liberated by 1 volume of H_2O_2 on decomposition									
		$\begin{array}{c} 2 \longrightarrow 2H_2O + O \\ 22.4 \text{ lit at ST} \end{array}$	O_2	-		5				
	Volum	e strength of H ₂ O	solution :	= N × 5.6		(where N is t solution	he normal	ity of the H ₂ O ₂		
	Practi	ce Problems :								
1.	(a)	Calculate the	e strength	of '20 V' of H ₂	O ₂ in term	s of :				
	(i) normality (ii) grams per litre (iii) molarity and (iv) percentage									
	(b)	Calculate the	e volume s	strength of 2.0	N H ₂ O ₂ sol	lution.				
2.		of 0.1 N Na ₂ S ₂ O ₃								
	[Answ	ers: (a) (i) 3.58 l	N (ii) 60.8	6 g/lit. (iii) 1.79	M (iv) 6.0	86% (W/V) (b)	11.2 V (2)	0.68 g/litre]		

 $100~mL~of~1~M~KMnO_4~oxidised~100~mL~of~H_2O_2~in~acidic~medium~(when~MnO_4^-~is~reduced~to~Mn^{2+}); volume~of~same~KMnO_4~required~to~oxidise~100~mL~of~H_2O_2~in~basic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2)~will~acidic~medium~(when~MnO_4^-~is~reduced~to~MnO_2^-~is~reduced~to~MnO$

8.