

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi – 110 018, Ph. : 9312629035, 8527112111

C1 Curve Tracing :

To find the approximate shape of a curve, the following procedure is adopted in order :

(a) Symmetry:

(i) Symmetry about x-axis :

If all the powers of 'y' in the equation are even then the curve is symmetrical about the x-axis.

(ii) Symmetry about y-axis : If all the powers of 'x' in the equation are even then the curve is symmetrical about the y-axis.

(iii) Symmetry about both axis : If all the powers of 'x' and 'y' in the equation are even, the curve is symmetrical about the axis of 'x' as well as 'y'.

Symmetry about the line y = x: If the equation of the curve remains unchanged on interchanging 'x' and 'y', the the curve is symmetrical about the line y = x.

(iv)

Symmetry in opposite quadrants : If the equation of the curve remains unaltered when 'x' and 'y' are replaced by-x and -y respectively then there is symmetry in opposite quadrants.

a > 0 for example : $y^2 = 4ax$

for example : $x^2 + y^2 = a^2$

for example : $x y = c^2$

- (b) Find the points where the curve crosses the x-axis and also the y-axis.
- (c) Find $\frac{dy}{dx}$ and equate it to zero to find the points on the curve where you have horizontal tangents.
- (d) Examine if possible the intervals when f(x) is increasing or decreasing.
- (e) Examine what happens to 'y' when $x \to \infty$ or $x \to -\infty$.

(f) Asymptotes :

Asymptote(s) is (are) line (s) whose distance from the curve tends to zero as point on curve moves towards infinity along branch of curve.

(i) If $\underset{x \to a}{\text{Lt}} f(x) = \infty$ or $\underset{x \to a}{\text{Lt}} f(x) = -\infty$ then x = a is asymptote of y = f(x).

(ii) If
$$\underset{x \to +\infty}{\text{Lt}} \mathbf{f}(\mathbf{x}) = \mathbf{k} \text{ or } \underset{x \to -\infty}{\text{Lt}} \mathbf{f}(\mathbf{x}) = \mathbf{k}$$
, then $y = k$ is asymptote of $y = f(x)$

(iii) If
$$\lim_{x \to \infty} \frac{f(x)}{x} = m_1$$
, $\lim_{x \to \infty} (f(x) - m_1 x) = c$, then $y = m_1 x + c_1$ is an asymptote.

(inclined to right)

(iv) If
$$\underset{x \to -\infty}{\text{Lt}} \frac{f(x)}{x} = m_2$$
, $\underset{x \to -\infty}{\text{Lt}} (f(x) - m_2 x) = c_2$, then $y = m_2 x + c_2$ is an asymptote

(inclined to left).

C2 Quadrature :

(a) If $f(x) \ge 0$ for $x \in [a, b]$, then area bounded by curve y = f(x), x-axis, x-axis, x = a and

$$\mathbf{x} = \mathbf{b}$$
 is $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) d\mathbf{x}$.

(b) If
$$f(x) \le 0$$
 for $x \in [a, b]$, then area bounded

by curve y = f(x), x-axis, x = a and x = b is $-\int_{a} f(x) dx$.

between
$$x = a$$
 and $x = b$ is $\int_{a} f(x)dx - \int_{c} f(x)dx$.

(d) If $f(x) \ge g(x)$ for $x \in [a, b]$ then area bounded by curves y = f(x) and y = g(x) between ordinates

$$\mathbf{x} = \mathbf{a}$$
 and $\mathbf{x} = \mathbf{b}$ is $\int_{\mathbf{a}}^{\mathbf{b}} (\mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{x})) d\mathbf{x}$.

(e) If $g(y) \ge 0$ for $y \in [c, d]$ then area bounded by curve x = g(y) and y-axis between abscissa

$$y = c$$
 and $y = d$ is $\int_{y=c}^{d} g(y) dy$.

MA - 4

Practice Problems :

1. The area bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is

	(a)	$\frac{16}{3}$ ab	(b)	$\frac{18}{3}$ ab	(c)	$\frac{20}{3}$ ab	(d)	$\frac{22}{3}$ ab
2.	The area cut off the parabola $4y = 3x^2$ by the straight line $2y = 3x + 12$ is							
	(a)	26	(b)	27	(c)	28	(d)	29
3.	The area	a of the region bo	ounded by	y the curve y = x	sinx and	l the x-axis betwe	en x = 0	and $x = 2\pi$ is
	(a)	2π	(b)	3π	(c)	4π	(d)	5π
4.	The area	a bounded by the	curve y	$= \log_e x, x = 0, x =$	= 1 and y	v = 0 is		
	(a)	1	(b)	2	(c)	3	(d)	4
5.	The area	a enclosed by x -	+ y = 1 i	s				
	(a)	5	(b)	4	(c)	3	(d)	2
6.	The area is	a of the figure bo	unded by	y two branches o	f the cur	ve $(y - x)^2 = x^3$ and	d the stra	aight line x = 1
	(a)	$\frac{1}{5}$	(b)	$\frac{2}{5}$	(c)	$\frac{3}{5}$	(d)	$\frac{4}{5}$
7.	The area bounded by the curve $y = f(x)$, x-axis and the ordinates $x = 1$ and $x = b$ is $(b - 1) \sin (3b + 4)$ The function $f(x)$ is $a(x - 1) \cos (3x + 4) + \sin (3x + 4)$. The value of a is							
	(a)	1	(b)	2	(c)	3	(d)	4
8.	The area enclosed by the curve $y = 2^x$ and max $\{ x , y \} = 1$ is							
	(a)	$3 + \frac{1}{2ln2}$	(b)	$4 + \frac{1}{2ln2}$	(c)	$5+\frac{1}{2ln2}$	(d)	$6 + \frac{1}{2ln2}$
9.	Area enclosed by the curve $ x - 2 + y + 1 = 1$ is equal to							
	(a)	4 sq. units	(b)	6 sq. units	(c)	2 sq. units	(d)	8 sq. units
10.	Area bounded by $y = \tan^{-1}x$, $y = \cot^{-1}x$ and y-axis is equal to							
	(a)	<i>l</i> n √2 sq. units	(b)	<i>l</i> n 4 sq. units	(c)	<i>l</i> n 8 sq. units	(d)	<i>l</i> n 2 sq. units
	[Answers : (1) a (2) b (3) c (4) a (5) d (6) d (7) c (8) a (9) c (10) d]							
nin en free ouer								